Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Система двух случайных величин. Ф-я распред, св-ва. Вероятн попадания в полуполосу и прямоугольник
Две сл. вел-ны могут быть связаны либо функциональной зависимостью, либо зависимостью другого рода, называемой статистической, либо быть независимыми. Строгая функ-ная зав-ть реализуется редко, т.к. обе величины или одна из них подвержены еще действию случ.факторов, причем среди них могут быть и общие для обеих величин. В этом случае возникает статистическая зависимость. Стат-койнзвзав-ть, при к-рой изменение одной из величин влечет изменение распределения другой. В частности, стат.зав-тьпроявл.в том, что при изменении одной из величин изменяется среднее значение другой. В этом случае стат.зав-тьнзвкорреляционной Определение 8.1. Функцией распределения F(x, y) двумерной случайной величины (X, Y) называется вероятность того, что X < x, a Y < y: F( х, у ) = p ( X < x, Y < y ). Рис.1. Это означает, что точка (X, Y) попадет в область, заштрихованную на рис. 1, если вершина прямого угла располагается в точке (х, у). Замечание. Определение функции распределения справедливо как для непрерывной, так и для дискретной двумерной случайной величины Свойства функции распределения. 0 ≤ F(x, y) ≤ 1 (так как F(x, y) является вероятностью). F(x, y) есть неубывающая функция по каждому аргументу: F(x2, y) ≥ F(x1, y), если x2 > x1; F(x, y2) ≥ F(x, y1), если y2 > y1. Доказательство. F(x2, y) = p(X < x2, Y < y) = p(X < x1, Y < y) + p(x1 ≤ X < x2, Y < y) ≥ ≥ p(X < x1, Y < y) = F(x1, y). Аналогично доказывается и второе утверждение. Имеют место предельные соотношения: а) F(-∞, y) = 0; b) F(x, - ∞) = 0; c) F(- ∞, -∞) = 0; d) F( ∞, ∞) = 1. Доказательство. События а), b) и с) невозможны ( так как невозможно событие Х<- ∞ или Y <- ∞), а событие d) достоверно, откуда следует справедливость приведенных равенств. При у = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Х: F(x, ∞) = F1(x). При х = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Y : F( ∞, y) = F2(y). Доказательство. Так как событие Y < ∞ достоверно, то F(x, ∞) = р(Х < x) = F1(x). Аналогично доказывается второе утверждение.
27. Плотность распределения вероятностей двумерной случайной величины и её свойства. Плотностью совместного распределения вероятностей (двумерной плотностью вероятности)непрерывной двумерной случайной величины называется смешанная частная производная 2-го порядка от функции распределения: . Замечание. Двумерная плотность вероятности представляет собой предел отношения вероятности попадания случайной точки в прямоугольник со сторонами Δх и Δу к площади этого прямоугольника при Свойства двумерной плотности вероятности. 1) f(x, y) ≥ 0 (см. предыдущее замечание: вероятность попадания точки в прямоуголь-ник неотрицательна, площадь этого прямоугольника положительна, следовательно, предел их отношения неотрицателен). 2) (cледует из определения двумерной плотности вероятно-сти). 3) (поскольку это вероятность того, что точка попадет на плос-кость Оху, то есть достоверного события).
|
||
Последнее изменение этой страницы: 2018-05-30; просмотров: 289. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |