Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вывод общего уравнения прямой на плоскости.




Теорема.

Всякое уравнение первой степени вида , где А, В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и любая прямая в прямоугольной системе координат Oxy на плоскости задается уравнением вида при некотором наборе значений A, B и C.

Доказательство.

Как видите, теорема состоит из двух частей. Докажем сначала, что уравнение вида задает прямую на плоскости.

Пусть координаты точки удовлетворяют уравнению , то есть, . Вычтем из левой и правой частей уравнения соответственно левую и правую части равенства , при этом получаем уравнение вида , которое эквивалентно .

Уравнение  представляет собой необходимое и достаточное условие перпендикулярности двух векторов и . То есть, множество всех точек определяет в прямоугольной системе координат Oxy прямую линию, перпендикулярную направлению вектора . Если бы это было не так, то векторы и не были бы перпендикулярными и равенство не выполнялось бы.

Таким образом, уравнение  задает прямую линию в прямоугольной декартовой системе координат Oxy на плоскости, следовательно, эквивалентное ему уравнение вида задает эту же прямую. На этом первая часть теоремы доказана.

Теперь докажем, что всякая прямая в прямоугольной системе координат Oxy на плоскости определяется уравнением первой степени вида .

Пусть в прямоугольной системе координат Oxy на плоскости задана прямая a, проходящая через точку , - нормальный вектор прямой a, и пусть - плавающая точка этой прямой. Тогда векторы и   перпендикулярны, следовательно, их скалярное произведение равно нулю, то есть, . Полученное равенство можно переписать в виде . Если принять , то получим уравнение , которое соответствует прямой a.

На этом доказательство теоремы завершено.

Уравнение вида есть общее уравнение прямой на плоскости в прямоугольной системе координат Oxy.

Вывести уравнение прямой на плоскости с угловым коэффициентом и уравнение прямой в отрезках на осях.

Уравнение прямой с угловым коэффициентом имеет вид , где k - угловой коэффициент прямой, b – некоторое действительное число. Уравнением прямой с угловым коэффициентом можно задать любую прямую, не параллельную оси Oy (для прямой параллельно оси ординат угловой коэффициент не определен).

Пусть прямая l не параллельна оси Оу (рис.1). Обозначим точку пересечения прямой l с осью Оу буквой В(О;в), а угол между положительным направлением оси Ох и прямой l обозначим угол, отсчитываемый от оси Ох против часовой стрелки () , называется углом наклона прямой l к оси Ох.

Выведем уравнение прямой l.
Пусть М(х,у) – произвольная точка прямой l с текущими координатами х,у. Из прямоугольного треугольника ВМN (рис.1) имеем:  (1)

Отсюда , или   и окончательно   где   - Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом прямой.
Уравнение  называется уравнением прямой с угловым коэффициентом.
Число в – это величина отрезка, отсекаемого прямой на оси ординат.










Последнее изменение этой страницы: 2018-04-12; просмотров: 474.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...