Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Спектр излучения атома водорода. Обобщенная формула Бальмера. Спектральные серии




Экспериментальное исследование спектров излучения разрежённых газов (отдельных атомов), т.е. газов для которых взаимодействием между атомами можно пренебречь, показали, что характерный линейчатый спектр каждого элемента представляет собой серии линий, положение которых может быть описано простыми эмпирическими формулами. Так, например, положение линий излучения атома водорода в видимой области спектра для длин волн описываютсяформулой Бальмера:

или используя соотношение для частот

где = 1,1∙107 м-1, =3,29∙1015 c-1 - постоянная Ридберга

Позднее, в ультрафиолетовой области была обнаружена:

серия Лаймана = 2, 3, 4, 5,…

и в инфракрасной области

серия Пашена: = 4, 5, 6,…

серия Брэкета: = 5, 6, 7,…

серия Пфунда: = 6, 7, 10,…

серия Хемфри: = 7, 10, 9,…

Все эти серии могут быть описаныобобщенной формулой Бальмера:

где = 1,2,3,4,5,6 определяет серию,а = +1, +2, определяет отдельные линии этой серии. С увеличением линии серии сближаются; значение = ∞ определяетграницу серии, к которой со стороны больших частот примыкает сплошной спектр. Аналогичные серии были выделены в линейчатых спектрах других атомов.

 


 


Гипотеза де Бройля. Соотношения, связывающие волновые и корпускулярные характеристики частицы. Уравнение и длина волны де Бройля. Опыты Дэвиссона и Джермера по дифракции электронов.

Гипотеза де Бройля. Электромагнитное излучение (свет) обладает одновременно и волновыми и корпускулярными свойствами. В этом проявляется корпускулярно-волновой дуализм.

Микрочастицы должны проявлять волновые свойства, причем соотношения, связывающие волновые и корпускулярные характеристики частицы, остаются такими же, как и в случае электромагнитного излучения:

Свет с длиной волны и частотой ведет себя как поток частиц (фотонов)с импульсом и энергией .Частице с импульсом и энергией соответствует некий волновой процессс длиной волны и частотой .

Волны де Бройля– волны, связанные с любой движущейся материальной частицей. Любая движущаяся частица (например, электрон) ведёт себя не только как локализованный в пространстве перемещающийся объект - корпускула, но и как волна, причём длина этой волны даётся формулой λ = h/р, где h = 6.6·10-34Дж.сек – постоянная Планка, а р – импульс частицы. Эта волна и получила название волны де Бройля. Если частица имеет массу m и скорость v << с (с – скорость света), то импульс частицы р = mv и дебройлевская длина волны связаны соотношением λ = h/mv.

В 1927 г. Американские ученые Девиссон и Джермер, англичанин Томсон и советский ученый Тартаковский независимо друг от друга обнаружили дифракцию электронов, что явилось экспериментальным подтверждением волновых свойств электронов. Позднее была открыта дифракция (интерференция) α-частиц, нейтронов, протонов, атомов и даже молекул. В настоящее время дифракция электронов используется для исследования строения вещества.

Проводилось исследование отражения электронов от монокристалланикеля. Установка включала в себя монокристалл никеля, сошлифованный под углом и установленный на держателе. На плоскость шлифа направлялся перпендикулярно пучок монохроматических электронов. Скорость электронов определялась напряжением Uна электронной пушке:

Под углом  к падающему пучку электронов устанавливался цилиндр Фарадея, соединённый с чувствительным гальванометром. По показаниям гальванометра определялась интенсивность отражённого от кристалла электронного пучка. Вся установка находилась в вакууме. В опытах измерялась интенсивность рассеянного кристаллом электронного пучка в зависимости от угла рассеяния от азимутального угла  от скорости электронов в пучке.

Опыты показали, что имеется ярко выраженная селективность (выборочность) рассеяния электронов. При различных значениях углов и скоростей, в отражённых лучах наблюдаются максимумы и минимумы интенсивности. Условие максимума:

Здесь d— межплоскостное расстояние.

Таким образом наблюдалась дифракция электронов на кристаллической решётке монокристалла. Опыт явился блестящим подтверждением существования у микрочастиц волновых свойств.


 










Последнее изменение этой страницы: 2018-05-30; просмотров: 354.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...