Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Законы равновесного излучения абсолютно черного тела. Закон Стефана – Больцмана, закон смещения Вина, формулы Вина и Рэлея – Джинса. Ультрафиолетовая катастрофа.




Тепловое излучение и его характеристики (излучательная способность, энергетическая светимость, поглощательная способность). Абсолютно черное тело. Закон Кирхгофа.

Электромагнитное излучение, возникающее за счет внутренней энергии излучающего тела, называется тепловым излучением. Оно определяется температурой и оптическими свойствами тела.

Основные характеристики теплового излучения:

1) Энергетическая светимостьMe [Вт/м2] – количество энергии, излучаемой за единицу времени по всем направлениям с единицы площади поверхности тела во всем диапазоне длин волн(эн. светимость еще называют интегральной плотностью излучения: RT=Ф/S).

2) Спектральная плотность энергетической светимости Mλ,T [Вт/м3] – количество энергии, излучаемой за единицу времени по всем направлениям с единицы площади поверхности тела в единичном диапазоне длин волн.

Поглощательная способность тела - это отношение поглощенного потока к падающему:

а=Фпоглпад

Излучательная способность является сложной функцией, зависящей от природы излучающего тела, его температуры, состояния поверхности, а для металлов от степени окисления поверхности. Для чистых металлов с полированными поверхностями излучательная способность имеет низкие значения. Для чистых металлов излучательная способность определяется теоретическим путем

- удельное сопротивление при 0оС , Ом∙мм2/м.

Энергетическая светимость и спектральная плотность энергетической светимости связаны следующим образом:

Тело, которое при всех температурах полностью поглощает все падающее на него излучение во всем диапазоне длин волн, называется абсолютно черным. Спектральный коэффициент поглощения абсолютно черного тела равен единице для всех длин волн, т.е.: aλ,T = aT = 1.

Спектральная плотность энергетической светимости Mλ,T и коэффициент поглощения aλ,T любого тела связаны соотношением, называемым законом Кирхгофа: в состоянии теплового равновесия отношение спектральной плотности энергетической светимости к спектральному коэффициенту поглощения не зависит от природы тела и является для всех тел одной и той же универсальной функцией, равной спектральной плотности энергетической светимости абсолютно черного тела: (Mλ,T /aλ,T)1 = (Mλ,T /aλ,T)2 = Moλ,T .

Следствия из закона Кирхгофа:

1) Всякое тело при данной температуре излучает преимущественно лучи тех же длин волн, которые сильнее всего поглощает.

2) Из всех тел при одной и той же температуре абсолютно черное тело обладает наибольшей спектральной плотностью энергетической светимости для любой длины волны излучения.


 


Законы равновесного излучения абсолютно черного тела. Закон Стефана – Больцмана, закон смещения Вина, формулы Вина и Рэлея – Джинса. Ультрафиолетовая катастрофа.

1) Закон Стефана – Больцмана: Энергетическая светимость абсолютно черного тела пропорциональна четвертой степени абсолютной температуры:

M0e = σT4,

где σ = 5,67 · 10-8 Вт/(м2 · К4) – постоянная Стефана – Больцмана.

2) Закон смещения Вина: длина волны λ’, на которую приходится максимум излучения в спектре абсолютно черного тела, обратно пропорциональна абсолютной температуре:

λ’ = b/T,

где b = 2,9 · 10-3м·К.

 

Ультрафиолетовая катастрофа— физический термин, описывающий парадоксклассической физики,состоящий в том, что полная мощность теплового излучения любого нагретого тела должна бытьбесконечной. Название парадокс получил из-за того, что спектральная плотность энергии излучениядолжна была неограниченно расти по мере сокращения длины волны.По сути этот парадокс показал если не внутреннюю противоречивость классической физики, то во всякомслучае крайне резкое (абсурдное) расхождение с элементарными наблюдениями и экспериментом.Так как это не согласуется с экспериментальным наблюдением, в конце XIX века возникали трудности вописании фотометрических характеристик тел.


 


Гипотеза Планка. Квант электромагнитного излучения. Закон излучения Планка, на основе которого получить формулы Вина и Рэлея – Джинса.

Теоретически излучение абсолютно черного тела было исследовано и рассчитано Планком в 1900 году, который впервые предположил, что энергия испускается в виде отдельных порций: постулат Планка.

Гипотеза Планка — является предположением того, что атомы испускают электромагнитную энергию (свет) отдельными порциями — квантами, а не непрерывно.

Фото́н— элементарная частица, квантэлектромагнитного излучения и переносчик электромагнитного взаимодействия. Это безмассовая частица, способная существовать в вакууме только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. В физике фотоны обозначаются буквой γ.

Энергия каждой порции является пропорциональной частоте излучения:

где h = 6,63 • 10-34 (Дж • с) — является постоянной Планка,v — является частотой света.

Формулу Планка для спектральной плотности энергии теплового излучения Испускательная способность абсолютно черного тела описывается законом Планка  

При высоких температурах (малых частотах) экспоненту в знаменателе формул и можно разложить в ряд: откуда получаем классическое выражение для средней энергии осциллятора и формулу Рэлея — Джинса. Для спектральной плотности энергии и испускательной способности абсолютно черного тела в зависимости от длины волны имеем

Оказалось, что закон Планка точно согласуется с экспериментальными данными во всем интервале длин волн, в то время как формула Рэлея — Джинса, как уже говорилось, соответствует данным опыта только при больших длинах волн.

Из закона Планка следует также закон смещения Вина. Если продифференцировать функцию Планка по , и приравнять нулю производную, то можно найти положение максимума функции . Действительно, приравнивая нулю функцию , получаем

 

Введя безразмерную переменную

приходим к уравнению Корень этого уравнения позволяет получить закон смещения Вина:

Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе все эмпирические законы теплового излучения, а также позволяет вычислить константы в этих законах.


Внешний фотоэффект. ВАХ вакуумного фотоэлемента: фототок насыщения, задерживающее напряжение. Закономерности внешнего фотоэффекта. Гипотеза Эйнштейна. Фотон. Уравнение Эйнштейна для внешнего фотоэффекта. Работа выхода.

Внешним фотоэлектрическим эффектом (фотоэффектом) называется процесс испускания электронов веществом при поглощении им квантов электромагнитного излучения (фотонов). Внешний фотоэффект был открыт в 1887 г. Г.Герцем, который обнаружил, что искровой разряд между двумя металлическими шариками происходит значительно интенсивнее, если один из шариков освещать ультрафиолетовыми лучами. После открытия электрона измерение удельного заряда вылетающих из металла под действием излучения частиц позволило установить, что частицы являются электронами.

Вольт-амперная характеристика фотоэлемента – зависимость фототока I, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами.

По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока - фототок насыщения - определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода:

где n – число электронов, испускаемых катодом за 1 с.

Из ВАХ следует, что при U = 0 фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным пулю, необходимо приложить задерживающее напряжение U0. При U = U0 ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

Т.е., измерив задерживающее напряжение U0, можно определить максимальные значения скорости кинетической энергии фотоэлектронов.

Экспериментально показано, что задерживающий потенциал зависит от частоты света, которым облучают катод фотоэлемента, и не зависит от величины падающего светового потока. При увеличении частоты облучающего света задерживающий потенциал возрастает

На опыте обнаружено, что кинетическая энергия вырываемых светом электронов зависит только от частоты падающего света и не зависит от величины светового потока. Если частота света меньше определенной для данного вещества минимальной частоты v0, то фотоэффекта не происходит. Частоту v0 называют красной границей фотоэффекта. Задерживающий потенциал, соответствующий красной границе фотоэффекта, равен нулю.

Краткий итог:фототок насыщения зависит только от интенсивности, а запирающее напряжение U0 зависит от кинетической энергии вырываемых светом электронов, в свою очередь кинетическая энергия зависит только от частоты света.

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1. Максимальная кинетическая энергия фотоэлектронов (следовательно и ) линейно возрастает с увеличением частоты света ν и не зависит от светового потока .

2. Для каждого вещества существует так называемая красная граница фотоэффекта, то есть наименьшая частота , при которой еще возможен внешний фотоэффект.

3. При неизменном спектральном составе падающего на катод света число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально световому потоку :

~  Это утверждение носит название закона Столетова.

4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν >νmin.

По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности света (I закон фотоэффекта). Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фотона с электроном происходит почти мгновенно.

Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии . По закону сохранения энергии,

(1)

Уравнение (1) называется уравнением Эйнштейна для внешнего фотоэффекта.

Работа, которую нужно затратить для удаления электрона из металла в вакуум, называется работой выхода.Укажем две вероятные причины появления работы выхода:

1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает избыточный положительный заряд и электрон притягивается к индуцированному им самим положительному заряду.

2. Отдельные электроны, покидая металл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убы­вает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (10-10 — 10-9 м). Он не создает электрического поля во внешнем пространстве, но препятствует выходу свободных электронов из металла.

 


 










Последнее изменение этой страницы: 2018-05-30; просмотров: 301.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...