Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Эффект Комптона. Вывод формулы комптоновского смещения на основе законов сохранения энергии и импульса. Комптоновская длина волны электрона.




Эффект Комптона:некогерентное рассеяниефотонов на свободных электронах, некогерентность означает, что фотоны до и после рассеяния не интерферируют. Эффект сопровождается изменением частоты фотонов, часть энергии которых после рассеяния передается электронам.

Эффект Комптона есть результат упругого столкновения рентгеновских фотонов со свободными электронами вещества. У легких атомов рассеивающих веществ электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными. В процессе столкновения фотон передает электрону часть своей энергии и импульса в соответствии с законами сохранения.

Рассмотрим упругое столкновение двух частиц – налетающего фотона, обладающего энергией E0 = hν0 и импульсом p0 = hν0 / c, с покоящимся электроном, энергия покоя которого равна

Фотон, столкнувшись с электроном, изменяет направление движения (рассеивается). Импульс фотона после рассеяния становится равным p = hν / c, а его энергия E = hν < E0. Уменьшение энергии фотона означает увеличение длины волны. Энергия электрона после столкновения, в соответствии с релятивистской формулой, становится равной

где pe – приобретенный импульс электрона. Закон сохранения записывается в виде или .

Закон сохранения импульса

можно переписать в скалярной форме, если воспользоваться теоремой косинусов:

Из двух соотношений, выражающих законы сохранения энергии и импульса, после несложных преобразований и исключения величины pe можно получитьmc20 – ν) = hν0ν(1 – cos θ).

Переход от частот к длинам волн

приводит к выражению, которое совпадает с формулой Комптона, полученной из эксперимента:

Таким образом, теоретический расчет, выполненный на основе квантовых представлений, дал исчерпывающее объяснение эффекту Комптона и позволил выразить комптоновскую длину волны Λ через фундаментальные константы h, c и m:

Как показывает опыт, в рассеянном излучении наряду со смещенной линией с длиной волны λ наблюдается и несмещенная линия с первоначальной длиной волны λ0. Это объясняется взаимодействием части фотонов с электронами, сильно связанными с атомами. В этом случае фотон обменивается энергией и импульсом с атомом в целом. Из-за большой массы атома по сравнению с массой электрона атому передается лишь ничтожная часть энергии фотона, поэтому длина волны λ рассеянного излучения практически не отличается от длины волны λ0 падающего излучения.


Опыты Резерфорда. Планетарная модель атома. Теория Бора атома водорода. Постулаты Бора. Боровский радиус. Энергия стационарных состояний атома водорода. Опыты Франка и Герца.

Существование в атоме почти точечного, но очень тяжелого положительно заряженного ядра было доказано английским физиком Эрнестом Резерфордом.В 1906-1912 гг. он изучал прохождение α-частиц с энергией в несколько МэВ через тонкие пластины (фольгу) золота и других металлов. Большинство частиц пролетало сквозь фольгу, практически не меняя направления своего движения. Но некоторые из них резко отклонялись от своего пути. При толщине фольги в 1 мкм в среднем всего 1 из 10 000 частиц отклонялась на угол больше 90°. Это казалось достаточно странным, так как, пролетая через фольгу, α-частица должна пройти мимо нескольких тысяч атомов.Столь редкие взаимодействия заставили Резерфорда пред­положить, что масса в веществе распределена не равномерно, а в виде отдельных, очень маленьких сгустков. Основное количество частиц пролетает между этими сгустками, а рассеиваются только те, которые в них попадают. Поскольку атомы в твердом теле расположены достаточно близко друг от друга, расстояния между ними примерно такие же, как размеры самого атома, они не могут быть этими сгустками. Поэтому Резерфорд пришел к выводу, что вещество сконцентрировано в центре атома, в его «ядре».

К моменту проведения своих опытов ученый уже установил заряд и массу α-частиц. Он знал, что α-частицы несут положительный заряд, по величине в два раза превышающий заряд электрона, и что они достаточно тяжелые, примерно в 7000 раз тяжелее электронов. Если α-частицы отклоняются ядрами, значит, ядра тоже несут положительный заряд.

Таким образом, Резерфорд установил в 1911 г. наличие в атомах ядер, размеры которых по крайней мере в 104 раз меньше размеров атомов и в которых сосредоточена практически вся масса атома. После опытов Резерфорда стало ясно, что вещество в основном состоит «из пустоты». А за свои исследования Резерфорд заслужил в научном мире титул «отца атомной теории».

Резерфорд предложил планетарную модель атома. Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, под действием кулоновских сил со стороны ядра вращаются электроны. Находиться в состоянии покоя электроны не могут, так как они упали бы на ядро.

Первый постулат Бора (постулат стационарных состояний) гласит: атомная система может находится только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает.

Второй постулат Бора (правило частот) формулируется следующим образом: при переходе атома из одного стационарного состояния с энергией En в другое стационарное состояние с энергией Em излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний:

nm = En – Em,

где h – постоянная Планка. Отсюда можно выразить частоту излучения:

II постулат Бора позволил объяснить спектральные закономерности излучения водородоподобных атомов.Атом водорода по Бору представляет собой систему, состоящую из положительно заряженного ядра, в котором сосредоточена практически вся масса атома, и электрона, вращающегося вокруг ядра по стационарным орбитам.

Бо́ровскийра́диус — радиус ближайшей к ядру орбиты электрона атома водорода в модели атома, предложенной Нильсом Бором в 1913 г. и явившейся предвестницей квантовой механики. Боровский радиус имеет значение 5,29·10−11 м

Полная механическая энергия E системы из атомного ядра и электрона, обращающегося по стационарной круговой орбите радиусом rn, равна

Следует отметить, что Ep < 0, так как между электроном и ядром действуют силы притяжения. Подставляя в эту формулу выражения для υ2 и rn, получим:

Целое число n = 1, 2, 3, ... называется в квантовой физике атома главным квантовым числом.

Дискретность энергетических состояний атома была продемонстрирована в 1913 г., в опыте Д. Франка и Г. Герца, в котором исследовалось столкновение электронов с атомами ртути. Оказалось, что если энергия электронов меньше 4,9 эВ, то их столкновение с атомами ртути происходит по закону абсолютно упругого удара. Если же энергия электронов равна 4,9 эВ, то столкновение с атомами ртути приобретает характер неупругого удара, т. е. в результате столкновения с неподвижными атомами ртути электроны полностью теряют свою кинетическую энергию. Это означает, то атомы ртути поглощают энергию электрона и переходят из основного состояния в первое возбужденное состояние,

E2 – E1 = 4,9 эВ.

 


 










Последнее изменение этой страницы: 2018-05-30; просмотров: 1840.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...