Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Операції над прямокутними матрицями.




Розглянемо прямокутні матриці. З’ясуємо за яких умов операції над прямокутними матрицями можна здійснювати за тими ж правилами, що й над квадратними.

Почнемо з прикладів :

- таке множення не можливо.

,

 ,                 .

 

Проаналізувавши наведені приклади, приходимо до такого правила множення прямокутних матриць.

Правило: Дві прямокутні матриці можна перемножити, якщо кількість елементів в рядку першої матриці збігається з кількістю елементів в стовпці другої матриці, тобто кількість столбців першої матриці дорівнює кількості рядків другої матриці, причому добуток має стільки рядків, скільки їх в першій матриці, і стільки стовпців, скільки їх в другій матриці.

 

Властивості прямокутних матриць.

1. Множення прямокутних матриць не комутативне.

2. Множення трьох матриць (якщо їх можна перемножити), підпорядковується асоцітивному закону, тобто (АВ)С = А(ВС) .

Доведення таке саме, як для квадратних матриць.

 

Розглянемо тепер і множення прямокутних матриць на число.

Аналізуючи операцію додавання квадратних матриць, приходимо до висновку, що додавати можна матриці однакових розмірів. А множити на число можна будь-яку матрицю.

Так само, як для квадратних матриць можна довести, що множина всіх прямокутних матриць одного розміру (s´n) є векторним простором відносно операцій додавання і множення матриці на число. Причому, арифметичним простором вимірності (s´n) .

Так само, як для квадратних матриць, можна вказати базіс простору. Ці матриці мають нульові єлементи, крім одного. Цей єлемент є 1. Таких матриць (s´n).

Псевдообернені матриці.

Почнемо з інформації про ранг добутку матриць, яка виявиться корисною при з’ясуванні умов існування псевдообернених матриць.

Відмітемо без доведення теорему.

Теорема. Ранг добутку матриць А і В не перевищує ранг матриці А і ранг матриці В.

Для подальшого важливим є наслідок з наведеної теореми.

Наслідок.        Ранг добутку двох матриць А і В, з яких одна, наприклад В , невироджена, дорівнює рангу матриці А.

Доведення.      Нехай С = А × В, det B ¹ 0.                                                  (1)

Треба довести, що r C = r A.

З теореми випливає, що

                                     r C £ r A ,                                                                   (2)

з того, що det B¹0, випливає, що існує матриця . Помножимо обидві частини рівності на : С ×  = А × B × . З того, що множення має властивість асоціативності, матимемо, С × = А × Е=А. Застосуємо ще раз доведену теорему.

rA£ rC                                                                                                          (3)

    З (2) та (3) випливає, що r А = r С.

 

Нехай задано прямокутну матрицю А=( ) , розміру s´n,

Означення.Матриця, що умовно позначається , називається псевдооберненою лівою, якщо вона задовольняє умові:

×А=Е.

Аналогічно вводиться поняття псевдооберненої правої матриці, якщо вона задовольняє умові:

А× =Е.

Для того, щоб з¢ясувати умови існування псевдообернених матриць, треба розподілити всі прямокутні матриці на два класи: горизонтальні та вертикальні.

Означення. Матриця називається горизонтальною, якщо кількість рядків в ній менша за кількість стовпців.

Матриця називається вертикальною, якщо кількість стовпців в ній менша за кількість рядків.

Теорема 1. Жодна горизонтальна матриця немає псевдооберненої лівої.

Доведення.Нехай матриця А – горизонтальна матриця, тобто s<n. Тоді за означенням виконується рівність × А = Е . В матриці Е повинно бути стільки стовпців, скільки в матриці А, тобто квадратна матриця Е має розмір n´n . Ранг матриці Е дорівнює n, тому що в ній є мінор n-го порядку, що не дорівнює нулю. З іншого боку, застосуємо теорему про ранг добутку двох матриць.

n =r E £ r A £ s , n £ s, що суперечить умові. Так само може бути доведено теорему 1¢ .

Теорема 1¢. Жодна вертикальна матриця не має оберненої правої.

Для того, щоб з¢ясувати, за яких умов горизонтальна матриця має праву, а вертикальна – псевдообернену ліву, треба ввести поняття рядковоневиродженної і стовпцевоневиродженної матриць.

 

Означення. Матриця називається рядкововиродженною, якщо її стовпці утворюють лінійнонезалежну систему.

Матриця називається стовпцовоневиродженною, якщо її стовпці утворюют лінійнонезалежну систему.

    З цього означення випливає, що горизонтальна матриця не може бути стовпцевоневиродженною, а вертикальна – рядковоневиродженною.

Теорема 2. Для того, щоб матриця мала псевдообернену праву, необхідно і достатньо, щоб вона була рядкововиродженною.

Доведення.

Небхідність. Нехай матриця А має псевдообернену праву. Треба довести, що матриця А – рядковоневиродженна, тобто r A = s .

З того, що існує     , випливає А ×  = Е (s´s). З цього випливає, що rE=s . З теореми про ранг добутку матриць s = r E £ r A £ s . Тобто r A = s .

Достатність. Нехай матриця А – рядкововиродженна (r A = s). Треба довести, що існує  . Для цього з’ясуємо, чи існує така матриця Х, що А × Х = Е.

Як відомо для можливості множення матриця Е має бути (s×s), а тоді Х має бути (n×s).

                

Отже матриця Х задовольняє умову:

 

 .                                         (4)

 

Безпосереднім множенням знайдемо елементи першого рядка добутку матриць

                                                               (5)

Треба довести, що система (5) сумісна. Для цього треба довести, що виконуються умови теореми Кронекера-Капеллі:

.

За умовою теореми  rA = s. Ранг r  також дорівнює s, тому що вона містить мінор s- го порядку, що не дорівнює нулю. Це мінор матриці А, а мінорів більш вищого порядку для  утворити неможливо, тоді з теореми про ранг r  = s.

Таким чином, виконується теорема Кронекера-Капеллі. Система (2) сумісна. Розв¢язавши її , знайдемо перший стовпчик шуканої матриці Х. Більш того, зауважемо, що система (2) має безліч розв¢язків. Оскільки r A = s < n, то виконуються умови критерія невизначеності. Так само отримаємо систему рівнянь, що містить другий стовпчик матриці Х:

Так само доведемо, що система сумісна. Поступаючи аналогічним чином, отримаємо систему для останнього стовпця матриці Х.

Отже доведено, що існує псевдообернена права матриця Х для матриці А. Більш того, вона не єдина, їх безліч.

Комплесні числа.










Последнее изменение этой страницы: 2018-05-30; просмотров: 192.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...