Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Центральна гранична теорема.
Для послідовності випадкових величин розглянемо:
Теорема. Якщо випадкові величини в послідовності незалежні, однаково розподілені і для них існують моменти другого порядку, то
тобто граничним розподілом для є нормальний закон розподілу з нульовим математичним сподіванням і одиничною дисперсією. Теорема Ляпунова. Якщо для незалежних випадкових величин, які утворюють послідовність , існують моменти третього порядку і виконується умова то для виконується співвідношен- Наслідком розглянутих теорем є інтегральна теорема Лапласа. У схемі незалежних повторних випробувань де Це випливає з того, що частоту події можна подати як суму n випадкових величин — частот настання події в окремих випробуваннях. При достатньо великих значеннях n закон розподілу цієї суми близький до нормального. Аналогічними міркуваннями для цієї схеми легко дістати формулу: де m — частота події А у n випробуваннях.
Генеральна та вибіркова сукупність. Співвідношення чисельних характеристик. Генеральною сукупністю в математичній статистиці називається множина однотипних об’єктів, кількісна чи якісна ознака яких підлягає вивченню. Підмножина об’єктів, дібраних у відповідний спосіб із генеральної сукупності, називається вибірковою сукупністю. Вважаємо, що ознака, яка вивчається, є випадковою величиною Х із функцією розподілу Результати вибірки розглядатимемо як послідовність незалежних однаково розподілених випадкових величин Закон розподілу для всіх визначається функцією Результати вибірки — реалізації випадкових величин — позначатимемо відповідно через Розмістивши ці числа в порядку зростання і записавши частоти з якими зустрічаються ці значення, дістанемо варіаційний, або статистичний, ряд:
На підставі такого ряду можна побудувати статистичну функцію розподілу Якщо , то статистична функція розподілу збігається д теоретичної функції розподілу.
Статистичний розподіл вибірки. Полігон, гістограмма, емпірична функція. Дискретний статистичний розподіл вибірки можна зобразити графічно у вигляді ламаної лінії, відрізки якої сполучають координати точок (xi; ni), або (xi; Wi). У першому випадку ламану лінію називають полігоном частот, у другому — полігоном відносних частот.
Гістограма частот та відносних частот.Гістограма частот являє собою фігуру, яка складається з прямокутників, кожний з яких має основу h і висотy . Гістограма відносних частот є фігурою, що складається з прямокутників, кожний з яких має основу завдовжки h і висоту, що дорівнює .
Площа гістограми частот Площа гістограми відносних частот .
|
||||||||||||
Последнее изменение этой страницы: 2018-05-27; просмотров: 229. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |