![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Кореляційний момент (коваріація, коефіцієнт кореляції). Властивості cov xy, rxy.
Корреляционный момент есть характеристика системы случайных величин, описывающая, помимо рассеивания величин Х и Y, еще и связь между ними. Для того, чтобы убедиться в этом отметим, что корреляционный момент независимых случайных величин равен нулю. Заметим, что корреляционный момент характеризует не только зависимость величин, но и их рассеивание. Поэтому для характеристики связи между величинами (Х;Y) в чистом виде переходят от момента Kxy к характеристике
где σx, σy - средние квадратичные отклонения величин Х и Y. Эта характеристика называется коэффициентом корреляции величин Х и Y. Случайные величины, для которых rxy=0, называют некоррелированными (несвязанными).
Нерівність Чебишева.(доведення). Нехай Звідси одержуємо,
Теорема Чебишева.(доведення). Нехай 1.M(Xі)>= aі 2.D(Xі )<= с Для всіх і=1,2,3…..n Якщо випадкові величини у послідовності Ця теорема є законом великих чисел ,так само як і центральна гранична теорема
Теорема Бернуллі.(доведення). Нехай проводиться n незалежних повторних випробувань, у кожному з яких імовірність настання події А дорівнює р.Якщо ймовірність появи випадкової події А в кожному з незалежних випробувань n є величиною сталою і дорівнює P,то при необмеженому збільшенні числа експериментів n→∞ Імовірність відхилення відносної частоти появи випадкової події W(A) від імовірності p ,взятої за абсолютною величиною на ε(ε>0) прямуватиме до одиниці зі зростанням n ,що можна записати так: де Наведена теорема є законом великих чисел ,так само як і центральна гранична теорема |
||
Последнее изменение этой страницы: 2018-05-27; просмотров: 250. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |