![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Линейные системы с постоянными коэффициентами и методы их решения Случай нормализуемой системы.
где
В итоге получим: (2) Система (2) распадается на n независимых ОДУ, отличающихся только правыми частями. Заметим, что каждое (достаточно гладкое) решение системы (1) (или (1одн.)) является решением системы (2) (или (2одн.)), но не наоборот. Из прошлого семестра заключаем, что общее решение системы (2одн.) имеет вид:
Лемма: Пусть Доказательство: ◄ Подставим
Таким образом, общая схема решения системы (1одн.) изложена. Осталось ее обосновать. Для этого положим:
Рассмотрим два случая: I случай: (случай нормализуемой системы).
Поскольку Эта система каноническая и, следовательно, может быть сведена к нормальной (отсюда название “нормализуемая” система). (
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 365. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |