Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Может ли математическое ожидание дискретно случайно величины, принимающей целые значения, быть числом не целым? Ответ обойснуйте.⇐ ПредыдущаяСтр 12 из 12
Математическое ожидание дискретной случайное величины, принимающей целые значения, может быть числом нецелым. Например, найдём математическое ожидание числа очков, выпадающих при бросании игральной кости, обозначим указанную случ. величину через X, принимающий целые значения (1; 2; 3; 4; 5; 6). Её закон распределения имеет вид:
- нецелое число
55. Пусть X – дискретная случайная величина, принимающая только неотрицательные значения и имеющая математическое ожидание m . Докажите, что P(X ≥ 5) ≤ m/5 . Докажем неравенство Маркова: Если x>0 и a=const, a>0, то Док-во: Введём новую величину:
X Y M(x) M(y), M(y)= aP(X a) aP(X a) M(x) P(X a) В нашем примере a=5 (т.е. a=const), a>0, M(x)=m По неравенству Маркова: P(X 5)
56. Докажите, что если X и Y – независимые дискретные случайные величины, принимающие конечное множество значений, то M(XY)=M(X)M(Y) Если случайные величины X и Y независимы, то математическое ожидание их произведения равно произведению их математических ожиданий (теорема умножения математических ожиданий). Возможные значения X обозначим x1, x2, …, возможные значения Y - y1, y2, … а pij=P(X=xi, Y=yj). Закон распределения величины XY будет выражаться соответствующей таблицей. А M(XY)= Ввиду независимости величин X и Y имеем: P(X= xi, Y=yj)= P(X=xi) P(Y=yj). Обозначив P(X=xi)=ri, P(Y=yj)=sj, перепишем данное равенство в виде pij=risj Таким образом, M(XY)= = . Преобразуя полученное равенство, выводим: M(XY)=( )( ) = M(X)M(Y) 57. Докажите, что если X и Y – дискретные случайные величины, принимающие конечное множество значений, то M(X +Y) = M(X ) +M(Y). Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:M(X+Y)= M(X)+M(Y). Док-во. Пусть случайные величины X и Y заданы следующими законами распределения(*)( возьмем 2 значения):
Составим все возможные значения величины X+Y. Для этого к каждому возможному значению X прибавим возможное значение Y; получим x1+y1, x1+y2, x2+y1, x2+y2. Предположим, что эти возможные значения различны( если не так, то доказательство аналогично), и обозначим их вероятности соответственно через p11,p12,p21,p22. Математическое ожидание величины X+Y равно сумме произведений возможных значений на их вероятности: M(X+Y) = (x1+y1)* *p11+(x1+y2)* p12+(x2+y1)* p21+(x2+y2)* p22, или M(X+Y) = x1*(p11+p12)+ x2*(p21+p22)+ +y1*(p11+p21)+ y1*(p12+p22). Докажем, что p11+p12=p1. Событие, состоящие в том, что X примет значение x1 (вероятность этого события равна p1), влечет за собой событие, которое состоит в том, что X+Y примет значение x1+y1 или x1+y2 (вероятность этого события по теореме сложения равна p11+p12), и обратно. Отсюда следует, что p11+p12=p1. Аналогично доказываются равенства p21+p22=p2, p11+p21=g1 и p12+p22=g2. Подставляя правые части этих равенств в соотношение (*), получим M(X+Y)=(x1p1+x2p2)+(y1g1+y2g2), или M(X+Y)= M(X)+M(Y). 58. Как определяется и что характеризует дисперсия дискретной случайной величины X ? Перечислите основные свойства дисперсии. На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Поэтому вычисляют среднее значение квадрата отклонения, которе и называется дисперсией. Дисперсией(рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания: D(X)=M[X-M(X)]2. Более удобная формула: D(X) = M(X 2) −M2 (X). Св-ва: 10. Дисперсия постоянной величины С равна нулю: D (С) = 0. 20. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат: D(CX)=С2D(X). 30. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин: D(X + Y)= D(X)+D(Y). 40. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий: D(X-Y)=D(X)+D(Y). 50 Прибавление( вычитание) константы к случайной величине не меняет ее дисперсии. D(X+C)=D(X). 59. Докажите, что если X – дискретная случайная величина, то D(X) = M(X 2) −M2(X). Док-во: Математическое ожидание M(X) есть постоянная величина, следовательно, 2M(X) и M2(X) также постоянные величины. D(X) = M(X 2) −M2 (X)= M[X-M(X)]2=M[X2-2XM(X)+M2(X)]=M(X2)-2M(X)M(X)+M2(X)=M(X2)-2M2(X)+M2(X)=M(X2)-M2(X). т.е. D(X) = M(X 2) −M2(X). 60. Пусть X – дискретная случайная величина. Может ли выполняться неравенство M(X 2)<(M(X ))2 ? Ответ обоснуйте. По определению дисперсии D(X)=M[X-M(X)] 2,тогда D(X)=M[X2-2ХM(X)+ M2 (X)]= M(X2)-2 M2 (X)+ M2 (X)= M(X2)- M2 (X). Итак, для любой с.в.Х D(X)= M(X2)- M2 (X), D(X)≥0, поэтому для любой с.в. Х всегда выполняется неравенство M(X2) ≥M2 (X). Поэтому неравенство М(Х2)< [M(X)] 2 выполняться не может.
61. Докажите, что если X и Y – независимые случайные величины, то D[XY]= D[X ]⋅D[Y ]+M[X ]2 D[Y ]+M[Y ]2 D[X ]. D(XY) = (M(XY)2)-[M(XY)]2 = M(X2Y2)-(M(x))2(M(Y))2 = M(X2)M(Y2)-M2(X)M2(Y) = (D(X)+[M(X)]2)(D(Y)+[M(Y)]2) – M2(X)M2(Y) = D(X)D(Y)+M(Y)2D(X)+M(X)2D(Y). Ч.т.д. 62. Пусть Х – дискретная случайная величина, распределенная по биномиальному закону распределения с параметрами n и р. Докажите, что М(Х)=nр, D(Х)=nр(1-р). Пусть производится n независимых испытаний, в каждом из которых может появиться событие А с вероятностью р, так что вероятность противоположного события Ā равна q=1-p. Рассмотрим сл. величину Х – число появления события А в n опытах. Представим Х в виде суммы индикаторов события А для каждого испытания: Х=Х1+Х2+…+Хn. Теперь докажем, что М(Хi)=р, D(Хi)=np. Для этого рассмотрим закон распределения сл. величины, который имеет вид:
Очевидно, что М(Х)=р, случайная величина Х2 имеет тот же закон распределения, поэтому D(Х)=М(Х2)-М2(Х)=р-р2=р(1-р)=рq. Таким образом, М(Хi)=р, D(Хi)=pq. По теореме сложения математических ожиданий М(Х)=М(Х1)+..+М(Хn)=nр, D(Х)=D(Х1)+…+D(Хn)=npq=np(1-р). 63. Докажите, что для биномиального закона распределения сл. величина с вероятностью успеха р в каждом из n независимых испытаний выполняется равенство: = 64. Пусть X – дискретная случайная величина, распределенная по закону Пуассона с параметром . Докажите, что M(X ) = D(X ) = λ . Закон Пуассона задается таблицей:
|