![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Задача двух тел. Приведенная масса
Рассмотрим задачу о движении двух взаимодействующих только между собой материальных точек. Вследствие однородности и изотропности пространства потенциальная энергия взаимодействия может зависеть только от расстояния между точками. Функция Лагранжа для данной задачи запишется в форме Рассматриваемая система материальных точек замкнута. Поэтому ее импульс сохраняется, и система отсчета центра инерции является инерциальной системой отсчета. Задачу будем решать в системе отсчета центра инерции. Начало координат поместим в центр инерции, что дает
Введем радиус-вектор
С помощью формул (4.2) и (4.3) выразим векторы
Потенциальная энергия теперь зависит только от величины вектора
Выраженная через радиус-вектор Функция Лагранжа (4.6) — это функция Лагранжа одной материальной точки массы
Масса Если масса одной материальной точки, например Поскольку масса Солнца намного больше массы каждой из планет Солнечной системы, то в первом приближении можно пренебречь взаимодействием планет между собой и движением Солнца вокруг центра инерции Солнечной системы. В этом приближении движение отдельной планеты рассматривается как движение материальной точки в поле тяготения Солнца. Учет взаимодействия планет между собой приводит к задаче многих тел, взаимодействующих между собой. Эта задача не может быть сведена к квадратурам и решается приближенными методами.
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 622. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |