![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Графический способ задания функции
Если в прямоугольной системе координат xOy на плоскости имеем некоторую совокупность точек М(х,у), при этом никакие две точки не лежат на одной прямой параллельной оси Oу, то эту совокупность точек можно рассматривать как график некоторой функции
2.3. Аналитический способ задания функции
Если функциональная зависимость Каждое аналитическое выражение, содержащее аргумент x, имеет естественную область применения. Под этой областью понимают множество всех тех значений x, для которых выражение сохраняет смысл, т.е. имеет вполне определенное конечное действительное значение. Так, для выражения x2 – 2 такой областью будет все множество R действительных чисел, т.е. бесконечный интервал (–∞, +∞). Для выражения Если функция задана аналитически, то она может быть изображена графически на координатной плоскости хOу. В последующем изложении нам в большинстве случаев придется рассматривать функции, заданные аналитическим выражением для которых область определения функции распространяется на всю естественную область применимости аналитического выражения. Поэтому, если в дальнейшем нет специальной оговорки, то под областью определения функции, заданной аналитически, мы будем подразумевать естественную область применимости аналитического выражения. Если же по каким-либо причинам область определения функции, заданной аналитическим выражением, ограничена множеством Р, а выражение имеет смысл и вне множества Р, выходить за пределы области определения Р функции, разумеется, все же нельзя. Такая ситуация может возникнуть, если функция задается не одной и той же формулой для всех значений аргумента х, но для одних – одной формулой, а для других – другой. Примером такой функции, в промежутке (–∞, +∞), может служить функция, определяемая следующими двумя формулами Здесь естественная область применения каждого выражения выходит за пределы области определения Р, на котором данное выражение задает функцию. Другая ситуация, которая типична для рассматриваемого случая, – это установление области определения сложной функции |
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 527. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |