![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Доверительные границы тренда
Если уравнение тренда рассматривается как выборочное, имеющее ошибки репрезентативности своих параметров, то можно рассчитать доверительные границы, внутри которых с заданной, достаточно большой вероятностью, проходит линия тренда в генеральной совокупности. Рассмотрим эту проблему на примере простейшего, линейного тренда. Оба его параметра, свободный член
Средняя ошибка репрезентативности параметра
Свободный член уравнения линейного тренда и среднее изменение за единицу времени – величины независимые, а, следовательно, по теореме сложения дисперсий независимых величин, дисперсия их суммы равна сумме дисперсий слагаемых, а среднее квадратическое отклонение (средняя ошибка) – корню квадратному из суммы дисперсий, то есть из суммы квадратов ошибок (5.15)
при Таким образом, ошибка тренда возрастает от середины базы его расчета (середина ряда) к его краям, образуя конусообразную зону вероятных значений генерального тренда (рис. 1.4)
Рис. 1.4. Доверительные границы генерального тренда
Чем сильнее колеблемость уровней и чем меньше база расчета тренда, тем шире доверительная зона генерального тренда, и тем быстрее она расширяется от середины ряда к его концам. Зона для параболического тренда расширятся при этом гораздо сильнее, чем для линейного тренда[14].
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 404. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |