![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Прогнозирование с помощью тренд – сезонных моделей
По временным рядам за лет в помесячном или поквартальном разрезе могут наблюдаться сезонные колебания. Сезонные колебания – это разновидность периодических колебаний. Для них характерны внутригодичные, повторяющиеся устойчиво из месяца в месяц (из квартала в квартал) изменения в уровнях, т.е. это регулярно повторяющиеся подъемы и снижение уровней ВР внутри года на протяжении ряда лет. Существует две модели сезонности: аддитивная и мультипликативная. В аддитивной модели сезонность выражается в виде абсолютной величины, которая добавляется или вычитается из среднего значения ряда, чтобы выделить показатель сезонности. В мультипликативной модели сезонность выражена как процент от среднего уровня, который должен быть учтен при прогнозировании путем умножения на него среднего значения ряда. Методика построения аддитивной и мультипликативной модели различается в зависимости от того, есть или нет тенденций в ряду динамики[16]. Если во ВР отсутствует тенденция, то уровень ряда рассматривается как функция сезонности и случайности (рис. 1.5):
где S – сезонная составляющая
Рис. 1.5. Стационарный временной ряд с сезонными колебаниями При аддитивной модели уровень такого ряда можно представить как:
Тогда: где Величина При мультипликативной модели уровень динамического ряда можно представить как произведение его составляющих:
где отношение Чем больше коэффициент сезонности, тем больше амплитуда колебаний уровней ряда относительно его среднего уровня, тем существеннее влияние сезонности. Чем меньше влияние случайной составляющей, тем в большей мере рассматриваемая модель адекватно описывает исходный временной ряд. Прогнозирование динамического ряда с сезонными колебаниями при отсутствии в нем тенденции сводится к прогнозированию среднего уровня
Значительно распространена ситуация, когда динамический ряд имеет тенденцию. В этом случае уровень временного ряда рассматривается как функция тенденции (t), сезонности (S), и случайности
где S – сезонная составляющая;
Общая колеблемость уровней ВР раскладывается на 3 составляющие: где
Алгоритм построения тренд – сезонной аддитивной модели: 1. Проводят сглаживание временного ряда с помощью простой скользящей средней. Период скольжения должен быть равен 1 году (если период четный, то проводится центрирование скользящей средней); 2.Рассчитывают абсолютные показатели сезонности:
где
3.Рассчитывают средние показатели сезонности для одноименных кварталов (месяцев):
4.Если
5.Проводят десезоналирование временного ряда: из исходных уровней вычитаем скорректированную сезонную компоненту:
6.По десезоналированному временному ряду проводим аналитическое выравнивание. 7.рассчитываем тренд с учетом сезонности:
При мультипликативной модели уровень ВР можно представить в виде сомножителей:
где E – коэффициент влияния случайности Алгоритм построения тренд – сезонной мультипликативной модели: 1.Сглаживание ВР с помощью скользящей средней 2.Рассчитываем коэффициент сезонности
3.Определяем средние показатели сезонности для одноименных кварталов (месяцев):
4.Если при поквартальном наблюдении
5.Исключаем сезонность из уровней ряда:
6.Проводится аналитическое выравнивание десезоналированного ряда; 7.Рассчитываются уровни временного ряда, обусловленные влиянием тенденции и сезонности:
Аддитивная модель целесообразна, если размах сезонных колебаний изменяется слабо.
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 772. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |