![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Закон совместного распределения выборочных значений
1. Все множество объектов, из которого производится их случайный равновероятный отбор, или, в терминах случайной величины, множество всех ее возможных значений, называется генеральной совокупностью. Группа из конечного числа
В случае непрерывной СВ аналогичное соотношение справедливо и для плотности совместного распределения:
При этом, поскольку все выборочные значения равновероятны с вероятностью
Так как величины
2. Чтобы прояснить смысл соотношений (1.3.3), (1.3.4), рассмотрим следующий пример. Пусть X — стандартная нормальная СВ Свертка (1.3.3) дает следующий результат:
Выборочное среднее в данном случае имеет нормальное распределение с параметрами Математическая статистика решает как бы «обратную задачу» теории вероятностей. То есть, если при классическом определении случайного события и вероятности по известным характеристикам генеральной совокупности вычислялись вероятности выборочных значений (результатов независимых испытаний), то в практических приложениях, наоборот, по имеющимся в распоряжении «наблюденным» выборочным значениям оцениваются неизвестные числовые характеристики и законы распределения генеральной совокупности. |
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 297. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |