![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Частные производные функции двух переменных
Переменная z называется функцией двух независимых переменных х и у на некотором множестве точек Пишут:
С геометрической точки зрения функция Если при Таким образом, по определению
Аналогично,
Так как
Пример 1 Найти частные производные функции Решение
Пример 2 Показать, что функция Решение Найдем частные производные
Подставим найденные выражения в левую часть уравнения:
Дифференциал функции двух переменных
Частным дифференциалом функции выражение выражение
Пример 1 Найти частные дифференциалы функции Решение
Полный дифференциал функции
Пример 2 Найти дифференциал Решение Найдем частные производные
Подставим частные производные в формулу полного дифференциала, получим
Краткое содержание (программа) курса
Элементы линейной алгебры Матрицы, операции над ними. Определители и их свойства и вычисление. Ранг матрицы, обратная матрица. Теорема Кронекера-Капелли. Решение систем линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса.Система m линейных уравнений с n неизвестными.
Элементы векторной алгебры и аналитической геометрии Линейные операции над векторами. Декартова прямоугольная система координат. Координаты вектора. Направляющие косинусы и длина вектора. Скалярные и векторные величины. Скалярное, векторное и смешанное произведение векторов. Прямая на плоскости. Расстояние от точки до прямой. Угол между прямыми. Геометрический смысл линейных неравенств и их систем. Кривые второго порядка: эллипс, гипербола, парабола, их канонические уравнения. Аналитическая геометрияв пространстве. Уравнение плоскости в пространстве. Прямая в пространстве. Основные задачи на прямую и плоскость в пространстве. Преобразование координат. Полярная система координат.
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 709. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |