![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Кривые второго порядка. Приведение уравнения кривой второго порядка к каноническому виду. Эллипс. Гипербола. Парабола.
В общей декартовой системе координат линия второго порядка может быть задана уравнением ( коэф-ты при произведении переменных и при их первых степенях обозначены 2B,2D и 2E, так как ниже часто будут употребляться половины этих коэф-тов) в котором коэф-ты A,B и C не равны нулю одновременно. Исследуем множество точек, которое ему удовлетворяют, не предполагая заранее, что хоть одна точка существует. С этой целью мы будем менять систему координат так, чтобы уравнение стало возможно проще. С самого начала можно считать систему координат декартовой прямоугольной, так как при переходе к прямоугольной системе координат общий вид ур-я (1) не изменится. При повороте базиса декартовой прямоугольной системы координат на угол φ старые координаты точки x,y будут связаны с ее новыми координатами x’, y’ формулами (
В новых координатах ур-е (1) примет вид Здесь многоточием обозначены члены первой степени относительно x’ ,y’ и свободный член, которые нет необходимости выписывать. Нас будет интересовать член с произведением x’y’ в преобразованном уравнении. В невыписанные члены это произведение не входит, и мы подсчитаем, что половина коэф-та при x’y’ есть
Если B=0, то переворачивать систему координат не будем. Если , то выберем угол φ так, чтобы B’ обратилось в нуль. Это требование приведет к уравнению 2Bcos2φ=(A-C)sin2φ (2) Если A=C , то cos2φ=0, и можно положить φ=п/4. Если же , то выберем . Для нас сейчас важно то, что хоть один такой угол обязательно существует. После поворота система координат на этот угол линия будет иметь уравнение
Выражение для коэф-тов уравнения (3) через коэф-ты (1) подсчитать не трудно, но это не нужно. Теперь коэф-т при произведении переменных равен нулю, а остальные члены мы по- прежнему считаем произвольными. Предложение1. Если в уравнении (3) входят с ненулевым коэф-том квадрат одной из координат, то при помощи переноса начала координат вдоль соответствующей оси можно обратить в нуль член с первой степенью этой координаты. В самом деле, пусть, например, . Перепишем (3) в виде Если мы сделаем перенос начала координат, определяемый формулами x’’=x’+D’/A’, y’’=y’, то уравнение приведется к виду
Как и требовалось доказать. A. Преположим, что , т.е. оба коэф-та отличны от нуля. Согласно предположению 1 при помощи переноса начала координат уравнение приведется к виду Могут быть сделаны следующие предположения относительно знаков коэф-тов в этом уравнении. A1. - коэф-ты A’ и C’ имеют один знак. Для F’’ имеются следующие три возможности. A1a. Знак F’’ противоположен знаку A’ и C’. Переносим F’’ в другую часть равенства и разделим на него. Уравнение примет вид где Оределение. Линия, которая в некоторой декартовой прямоугольной системе координат может быть заданна уравнением (5) при условии a≥b, называется эллипсом, уравнение называется каноническим уравнениемэллипса, а система координат- его канонической системой координат. При a=b уравнение (5) есть уравнение окружности радиуса a.Таким образом, окружность – частный случай эллипса. A1б. Знак F’’ совпадает с общим знаком A’’ и C’’. Тогда аналогично предыдущему мы можем привести уравнение к виду Этому уравнению не удовлетворяют координаты ни одной точки. Уравнение, которое приводится к каноническому виду (7) называется уравнением мнимого эллипса. A1в. F’’=0. Уравнение имеет вид Ему удовлетворяет только одна точка x’’=0, y’’=0/ Уравнение, приводящееся к каноническому виду (8), называется уравнением пары мнимых пересекающихся прямых. Основанием для этого названия служит сходство с приведенным ниже уравнением (10). A2. A’C’<0 – коэф-ты A’ и C’ имеют разные знаки. Относительно F’’ имеются следующие две возможности. A2a.F’’ Определение. Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением (9), называется гиперболой, уравнение называется каноническим уравнениемгиперболы, а система координат – ее канонической системой координат. A2б.F’’=0. Уравнение имеет вид Его левая часть разлагается на множители ax’’-cy’’ и ax’’+cy’’ и, следовательно. Обращается в нуль тогда и только тогда, когда равен нулю хоть один из сомножителей. Поэтому линия с уравнением (10) состоит из двух прямых. Эти прямые пересекаются в начале координат, и мы имеем, таким образом, пару пересекающихся прямых. Б. Допустим теперь, что A’C’=0, и, следовательно, один из коэф-тов A’ или C’ равен нулю. В случае необходимости, делая замену (6), мы можем считать, что A’=0. При этом С Б1. Пусть D’
Перенесем начало координат вдоль оси абсцисс в соответствии с формулами перехода или где p=-D’/C’. Мы можем считать, что p>0, т.к. в противном случае можно сделать дополнительную замену координат, изменяющую направление оси абсцисс: Определение. Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением (11) при условии p>0, называется параболой, уравнение называется каноническим уравнением параболы, а система координат- ее канонической системой координат. Б2. Допустим, что D’=0. Уравнение имеет вид Б2а.C’F’’<0- знаки C’ и F’’- противоположны. Разделив на C’, приведем уравнение к виду Левая часть уравнения разлагается на множители y’’+a и y’’-a. Обращение в нуль каждого из них определяет прямую линию. Эти прямые параллельны, и, таким образом, уравнение определяет пару параллельных прямых. Б2б. С’F’’>0 – знаки C’ и F’’совпадают. Разделив на C’, приведем уравнение к виду Этому уравнению не удовлетворяют координаты ни одной точки. Уравнение, приводящееся к каноническое виду (13), называют уравнением пары мнимых параллельных прямых. Б2в. F’’=0. После деления на C’ уравнение принимает вид Это уравнение эквивалентно уравнению y’’=0, и поэтому определяет прямую линию. Уравнение, приводящееся к каноническому виду (14), называется уравнением пары совпавших прямых. Соберем вместе полученные результаты. Теорема1. Пусть в декартовой системе координат задано уравнение второго порядка(1). Тогда существует такая декартова прямоугольная система координат, в которой это уравнение принимает один из следующих девяти канонических видов: 1) 3) 4) 7) В соответствии с этим существует семь классов линий второго порядка Уравнения 2)мнимого эллипса и уравнению 8)пары мнимых параллельных прямых не удовлетворяет ни одна точка. Эллипс. Эллипсом наз-ся линия, которая в прямоугольной декартовой системе координат определяется канонич. уравнением
при условии a≥b>0. Из уравнения (1) следует, что для всех точек эллипса |x|≤a и |y|≤b. Значит эллипс лежит в прямоугольнике со сторонами 2a и 2b. Точки пересечения эллипса с осями канонической системы координат, имеющие координаты (a,0), (-a,0), (0,b), и (0,-b), называются вершинами эллипса. Числа a и b называются соответственно большой и малой полуосями эллипса. Предложение 1.Оси канонической системы координат яв-ся осями симметрии эллипса, а начало канонической системы - его центром симметрии эллипса. Внешний вид эллипса проще всего описать сравнением с окружностью радиуса a с центром в центре эллипса: С эллипсом связаны две замечательные точки, называемые его фокусами. Пусть по определению и c≥0. Фокусами называют точки Для окружности с=0, и оба фокуса совпадают с центром. Ниже мы будем предполагать, что эллипс не яв-ся окружностью. Отношение называется эксцентриситетом эллипса. Отметим, что ε<1. Предложение 2. Расстояние от произвольной точки M(x,y), лежащий в эллипсе, до каждого из фокусов яв-ся линейной ф-цией от ее абсциссы x
Док-во. Очевидно,
Учитывая равенство (2), это можно преобразовать к виду Так как x≤a и ε<1, отсюда следует, что справедливо первое из равенств (4): Предложение3. Для того ,чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса 2a Необходимость условия очевидна: если мы сложим равенства (4) почленно, то увидим, что
Докажем достаточность. Пусть для точки M(x,y) выполнено условие (5), т.е
Возведем обе части равенства в квадрат и приведем подобные члены:
Это равенство также возведем в квадрат и приведем подобные члены, используя соотношение (2). Мы приведем к равенству С эллипсом связаны две замечательные прямые, называемые его директрисами. Их уравнение в канонической системе координат (рис.30) Предложение 4.Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету эллипса ε. Докажем это предложение для фокуса из формулы (4) мы видим теперь, что Обратно, пусть для какой-то точки плоскости
Т.к. ε=с/a, это равенство легко приводиться к виду (6), из которого следует уравнение эллипса. Введем уравнение касательной к эллипсу, заданному каноническим уравнением. Пусть Дифференцируем его по x: Подставляя Теперь мы можем написать уравнение касательной:
Упрощая это уравнение, учтем, что
Предложение 5. Касательная к эллипсу в точке Док-во. Нам надо сравнить углы
Гипербола. Гиперболой мы называли линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением Из этого уравнения видно, что для всех точек гиперболы |x|≥a т.е. все точки гиперболы лежат вне вертикальной полосы ширины 2a(рис.32). Ось абсцисс канонической системы координат пересекает гиперболу в точках с координатами (a,0) и (-a,0), называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. Таким образом, гипербола состоит из двух , не связанных между собой частей. Они называются ее ветвями. Числа a и b называют соответственно вещественной и мнимой полуосями гиперболы. В точности так же как и для эллипса док-ся Предложение 6. Для гиперболы оси канонической системы координат яв-ся осями симметрии, а начало канонической системы - центром симметрии. Для исследования формы гиперболы найдем ее пересечение с произвольной прямой, проходящей через начало координат. Уравнение прямой возьмем в виде y=kx, поскольку мы уже знаем, что прямая x=0 не пересекает гиперболу. Абсциссы точек пересечения находятся из уравнения
Поэтому если Это позволяет указать координаты точек пересечения (ab/υ, abk/υ) и (-ab/υ, -abk/υ), где обозначено υ=( Определение. Прямые с уравнением y=bx/a и y=-bx/a в канонической системе координат называются асимптотами гиперболы. Запишем уравнения асимптот в виде bx-ay=0 и bx+ay=0. Расстояние от точки M(x,y) до асимптот равны соответственно Если точка M находится на гиперболе, то
Предложение 7.Произведение расстояний от точки гиперболы до асимптот постоянно и равно Предложение 8. Если точка движется по гиперболе так, что ее абсцисса по абсолютной величине неограниченно возрастает, то расстояние от точки до одной из асимптот стремится к нулю. Действительно, хотя бы одно из расстояний Введем число с, положив и с>0. Фокусами гиперболы называются точки Предложение 9. Расстояние от произвольной точки M(x,y) на гиперболе до каждого из фокусов следующим образом зависят от ее абсциссы x:
Предложение 10. Для того чтобы точка M лежала на гиперболе, необходимо и достаточно, чтобы разность ее расстояний до фокусов по абсолютной величине равнялась вещественной оси гиперболы 2a. Необходимость условия уже доказана. Для док-ва достаточности условия его нужно представить в виде Дальнейшее отличается от док-ва предложения 3 только тем, что нужно воспользоваться равенством (10), а не (2) Директрисами гиперболы называются прямые, задаваемые в канонической системе координат уравнениями Предложение 11. Для того чтобы точка лежала на гиперболе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялась эксцентриситету ε. Уравнение касательной к гиперболе в точке
Предложение 12. Касательная к гиперболе в точке 3. Парабола. Параболой мы называли линию, которая в некоторой декартовой прямоугольной системе координат определяется уравнением
при условии p>0 Из уравнения (15) вытекает, что для всех точек параболы x≥0. Парабола проходит через начало координат. Эта точка называется вершиной параболы. Фокусом параболы называется точка F с координатами (p/2,0) в канонической системе координат. Директрисой параболы называется прямая с уравнением x=-p/2 в канонической системе координат Предложение 13.Расстояние от точки M(x,y), лежащей на параболе, до фокуса равно
Для док-ва вычислим квадрат расстояния от точки M(x,y) до фокуса по координатам этих точек : Отсюда в силу x≥0 следует равенство (16). Заметим, что расстояние от точки M до директрисы равно Отсюда вытекает необходимость следующего условия. Предложение14Для того чтобы точка M лежала на параболе, необходимо и достаточно, чтобы она была одинаково удалена от фокуса и от директриссы этой параболы. Докажем достаточность. Пусть точка M(x,y) одинаково удалена от фокуса и от директрисы параболы: Возведя это уравнение в квадрат и приводя в нем подобные члены, мы получаем из него уравнение параболы (15).Это заканчивает док-во. Параболе приписывается эксцентриситет ε=1. В силу этого соглашения формула верна и для эллипса, и гиперболы, и для параболы Введем ур-е касательной к параболе в точке, лежащей на ней. Пусть 0. Через точку проходит график ф-ции y=f(x), целиком лежащий на параболе. Для ф-ции f(x) выполнено тождество , дифференцируя которое имеем 2f(x)f’(x)=2p. Подставляя x= Упростим его. Для этого раскроем скобки и вспомним Предложение 15.Касательная к параболе в точке Док-во. Рассмотрим касательную в точке
одобные члены, мы получаем из него уравнение педеляется уравнением Но
|
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 524. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |