Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Виды неразрушимого контроля.




Ремонт гидрогасителеи.

Гидравлические гасители колебаний снимают с тележек, подвергают наружной сухой очистке, обмывают и отирают, затем разбирают.

Очистка и обмывка гидравлического гасителя колебаний:

1. Очистка дисковыми проволочными щетками.

Наружные поверхности гасителя перед обмывкой обрабатывают быстровращающимися проволочными щетками. При этом удаляют пленки окислов, продукты коррозии и жировые загрязнения. Щетки изготавливают из стальной или латунной проволоки диаметром 0,2-0,3 мм. Частота вращения щеток 1500-1800 об./мин, а их диаметр 130-140 мм. При работе щетку смачивают 2-5 %-ным раствором спирта кальцинированной соды.

2. Гидроабразивная очистка.

В качестве несущей среды используют воду под большим давлением или моющие растворы, как с абразивными частицами, так и без них. При подаче жидкости под давлением используют эффект гидродинамического воздействия на отложения. Для эффективной очистки целесообразно применять моющие жидкости.

3. Ультразвуковая очистка.

Используют эффект воздействия ультразвуковых колебаний на жидкую среду, что вызывает интенсивное смещение ее слоев.

Состав моющей жидкости выбирают в зависимости от вида загрязнений и материала очищаемых деталей. Температура моющей среды 20-70 ºC.

4. Очистка электрическим разрядом в жидкости.

При высоковольтном разряде внутри объема моющей жидкости возникают больше гидравлические давления ударного характера, что значительно повышает эффективность очистки.

Состав моющих жидкостей для очистки деталей гасителей колебаний приведен в таблице 2.3, а растворов для удаления продуктов коррозии - в таблице 2.4.

5. Обмывка и механическая обработка.

Детали, изношенные поверхности которых подлежат осталиванию, промывают в 10%-ом растворе каустической соды и при наличии ржавчины протирают в растворе серной или соляной кислоты с последующей обмывкой и сушкой. Для устранения неравномерного износа деталей и получения требуемой шероховатости поверхности их механически обрабатывают (на токарных и шлифовальных станках).

6. Обезжиривание поверхностей.

Производят для удаления с наращиваемых поверхностей следов жира и масла. Если деталь восстанавливают по внутренней поверхности (цилиндр), то обезжиривают перед монтажом детали на подвеску. При ремонте деталей целесообразно применять электрохимический способ обезжиривания с использованием реверсивного тока.

7. Промывка и контроль поверхности.

После окончания процесса осталивания детали тщательно промывают в горячей воде и нейтрализуют от остатков кислоты промыванием в 10%-ном растворе каустической соды с температурой 80-90 ºC в течение 30 минут. После нейтрализации детали вторично промывают для удаления следов щелочи, сушат, а затем проверяют качество покрытия, при котором осматривают деталь, определяют твердость поверхность и размеры поверхности.

Корпус гасителя колебаний, штоковую головку, защитный кожух, гайку корпуса промывают синтетическими моющими растворами керосином, дизельным топливом, затем сушат, осматривают и обмеряют.

Шток в сборе с клапаном, цилиндром, днище цилиндра с клапаном (клапан нижний), направляющая штока (головка цилиндра), обойму сальниковую обойму промывают в отдельной камере, затее обдувают сжатым воздухом и выполняют контрольные измерения.

Неметаллические детали гасителя (резиновые шайбы крепления, манжеты, кольца), как правило, заменяют новыми.

Металлические кольца, уплотняющие цилиндр и поршень заменяют исправными при износе их по толщине более 0,3 мм от чертежного размера, наличии наклепа.

На цилиндрических рабочих поверхностях штока с поршнем не допускаются задиры, вмятины, выбоины и местные износы более 0,03 мм. Изменение проводят индикатором часового типа с установкой штока в центрах. Цилиндрическая поверхность штока не должна иметь коррозионных повреждений. Не допускается обработка поверхностей штока и поршня наждачным полотном. Неисправные штоки заменяют новыми.

Резьбовые поверхности штока и поршня ремонтируют наплавкой с последующей нарезкой резьбы по чертежным размерам. Допускается восстанавливать резьбу штока приваркой втулки на предварительное обточенное место хвостовика с последующим нарезанием резьбы.

У гасителей колебаний не допускается коробление клапанных пластин. Верхняя пластина должна плотно прилегать к кольцевому выступу корпуса клапана, а нижняя – к заплечикам головки винта. На нижней пластине дроссельный вырез не должен совпадать с пазом в головке винта.

Корпуса клапанов в поршне со штоком и гайки, крепящей клапан в поршне, должны быть застопорены от поворота штифтами. Замки поршневых колец должны быть смещены между собой на 180º. Металлические кольца в направляющей штока должны плотно прилегать к штоку. Коробление этих колец не допускается.

Каркасные манжеты должны устанавливать в сальниковой обойме в противоположные стороны: одна манжета – для предохранения от утечек жидкости, вторая – для предохранения от попадания влаги и пыли внутрь гасителя колебаний.

Перед сборкой гасителя рабочие кромки и поверхности манжет, уплотняющих шток, должны быть смазаны смазкой ЛЗ-ЦНИИ ГОСТ 19791-74.

Резьбовые участки штоковой головки ремонтируют наплавкой с последующей нарезкой резьбы по чертежу. Допускается восстанавливать внутреннюю резьбу головки приваркой втулки после предварительной расточки с последующим нарезанием резьбы.

Резьбовые втулки головок гасителя должны быть заменены на новые из морозостойкой резины по ТУ 38-005295-77 и установлены в головках с применением клея 88НП ГОСТ 38-105-1061-82. Металлические втулки головок гасителя не должны иметь износа по внутреннему диаметру более 0,4 мм, износ валиков крепления гасителей колебаний допускается не более 1 мм по диаметру. Внутреннюю поверхность металлической втулки и шток гасителя на расстоянии до 80 мм от резьбового хвостовика смазывают смазкой ЛЗ-ЦНИИ. При сборке верхнюю головку гасителя плотно навинчивают на шток и закрепляют пружинной шайбой или стопорным винтом, винт закернивают.

В гидравлические гасители колебаний заливают указанное в чертежах количество рабочей жидкости – приборное масло ВМГЗ (0,9 л) предварительно профильтровать.

Отремонтированные гасители должны быть испытаны на стенде ПКБ-ЦВ для испытания гасителей колебаний с записью рабочей диаграммы. При испытании гасителя определяется качество сборки сальника и надежность крепления внутренних деталей гайкой корпуса, отсутствие протечек жидкости через уплотнения штока и корпуса. По диаграмме выявляется отсутствие внутренних дефектов, качество сборки, состояние втулок в головках. Параметр сопротивления гасителей колебаний, устанавливаемых на тележках наклонно, должен быть в пределах 90-125 кН с/м.

Испытание на стенде «ЭНГА». Проверяют работоспособность гасителя по диаграмме и по заключению, которое высвечивается на мониторе в зеленом прямоугольнике.

Сопрягаемые поверхности диска и корпуса впускных клапанов должны быть притерты и не иметь повреждений. Диски клапанов должны свободно, без заеданий, перемещаться относительно дистанционного кольца под действием силы тяжести. Посадка пружин предохранительного клапана допускается до высоты 14±0,1 мм. Предохранительные клапаны регулируются с помощью гидропресса на открытие при давлении жидкости 4,5±0,5 кгс/см., регулировочный винт стопорят кернением.

Разборка и сборка гидравлического гасителя колебаний производится на специальном стенде. Гаситель устанавливается на стенд в вертикальном положении, закрепляется валиками. Разборка производится в следующем порядке:

· отвернуть крепительный винт кожуха;

· с помощью цепного ключа отвернуть защитный кожух;

· вывернуть или высверлить стопорный винт штоковой головки;

· отвернуть верхнюю головку;

· снять защитный кожух;

· отвернуть стопорный винт, снять стопорную планку;

· отвернуть гайку корпуса, вынуть металлическое и резиновое кольца, обойму с манжетами;

· вынуть из корпуса цилиндропоршневую группу;

· снять направляющую с цилиндра, выбить днище с нижним клапаном;

· слить масло из цилиндра, вынуть шток, снять поршневое кольцо;

· снять стопорное кольцо клапана поршня, вывернуть клапан из поршня;

· снять стопорное кольцо клапана днища, вывернуть клапан;

· выпрессовать манжеты из обоймы;

· выпрессовать металлические и резиновые втулки из крепительных головок;

· разобрать клапан: отвернуть винт, вынуть пружину, шарик, снять корпус клапана с перепускными отверстиями, вынуть диск, кольцо.

После разборки гасителя колебаний все детали обмываются в моечной машине с применением керосина. Обмытые детали просушивают и обмеряют для выявления дефектов. Забракованные детали ремонтируют или заменяют новыми.

Собранный клапан проверяют на специальном стенде на давление 4,5 кгс/см2 .

Сборка гидравлического гасителя колебаний производится в обратной последовательности.

Собранный гаситель проверяют на испытательном стенде «ЭНГА» или ПКБ ЦВ.

Технологический процесс ремонта гидравлических гасителей колебаний приведен в таблице 2.5

Таблица 2.5 Технологический процесс ремонта

Наименование деталей, операций Операции по восстановлению
   
Гаситель в сборе Обмытый гаситель очищают и обтирают. Проверяют маркировку. Разбирают гаситель. Стопорный винт штоковой проушины выкручивают после срезания следов кернения, при невозможности выкручивания допускается высверливать винт. Разборку производят на специальных верстаках.
Втулки металлические Металлические втулки при диаметральном износе более 0,4 мм в деповском ремонте заменяют новыми. Допускаемый износ определяют калибром-пробкой ГК-3 (НЕ 32,65 мм) или штангенциркулем по взаимно-перпендикулярным осям отверстия. Наружный диаметр втулки контролируют калибром-скобой ГК-5 ( НЕ 39,3мм). При капитальном ремонте износ втулок не допускается.
Втулки резиновые Резиновые втулки заменяют новыми. Перед установкой втулку покрывают снаружи и внутри клеем 88-СА по ТУ 38.105.1760-89. Запрещается смазывать резиновые втулки масляными смесями. При запрессовке втулок используют мыльные растворы.
Детали цилиндропоршневой группы Шток в сборе с клапаном, цилиндр, днище цилиндра с клапаном, направляющую и сальниковую обойму промывают в моечной установке «ЭНГА», обтирают, осматривают и обмеряют.
Шток с поршнем Резьбовые части штока и поршня осматривают и проверяют резьбовыми калибрами. Износ, смятие более двух ниток резьбы не допускается. Поврежденные резьбы восстанавливают наплавкой с последующей механической обработкой до чертежных размеров. Перед наплавкой поврежденную резьбу обтачивают. При деповском ремонте допускается восстановление резьбы штока приваркой втулки на предварительно обточенный хвостовик с последующим нарезанием резьбы. На цилиндрических поверхностях штока и поршня в рабочих зонах не допускаются местные задиры, вмятины, выбоины глубиной более 0,5 мм площадью на поверхности детали более 1 мм и количеством более двух на каждой поверхности. Отслаивание или износ хромового покрытия не допускается. Цилиндрические поверхности штока не должны иметь коррозионных повреждений. Загрязнения удаляют пастой-смывкой или полированием. Не допускается обработка поверхности штока наждачным полотном и зажим его в тисках или других приспособлениях без мягких прокладок. Шероховатость поверхности штока должна соответствовать чертежным данным Ra 02, контроль параметров резьб проводят набором калибров, резьбовыми шаблонами и визуально. При деповском ремонте диаметр штока не должен быть менее 48-0,07 мм, диаметр поршня – менее 67,2-0,1 мм. Диаметр штока в рабочей зоне измеряют микрометром по ГОСТ 6507-78. Диаметральный зазор между штоком и направляющей допускается не более 0,08 мм при деповском ремонте и не более 0,07 мм при капитальном ремонте. Его определяют набором щупов №1 по ГОСТ 882-75. При к.р.диаметр штока не должен быть менее 48-0,06 мм

Продолжение таблицы 2.5

   
Поршневое кольцо Проверяют износ поршневого кольца. Размер замка не более 0,5 мм при деповском ремонте выявляют набором щупов №4 по ГОСТ 882-75 при сжатии кольца в калибре- кольце ГК-4. При капитальном ремонте устанавливают новое поршневое кольцо, оно должно иметь свободную посадку в канавке поршня и плотно прилегать к внутренней поверхности цилиндра, зазор замка не должен превышать 1 мм при ДР и 0,3мм при КР.
Направляющая Направляющую штока ремонтируют наплавкой электродами марки ОЗЧ-1 (ГОСТ 9466-75) или латунью с последующей механической обработкой по диаметру до чертежным размеров. Отремонтированные направляющие должны иметь чертежные размеры. Не допускаются риски, задиры, вмятины на рабочих и сопрягаемых поверхностях со штоком и цилиндром. Внутренний диаметр направляющей контролируют индикаторным нутрометром по ГОСТ 868-82 при ДР или калибром – пробкой ГК-2 (непроходной размер 48,07 мм). Вновь изготовленные направляющие должны иметь чертёжные размеры, которые контролируются нутрометром и микрометром. Контроль производят по взаимно-перпендикулярным диаметрам отверстия и окружности направляющей.
Цилиндр Цилиндр, в случае неисправности, заменяют новым, износы внутренней рабочей поверхности выявляют индикаторным нутрометром. Диаметральный износ внутренней поверхности цилиндра в рабочей зоне при деповском ремонте не должен превышать 0,3мм, при капитальным – 0,1мм. Рабочей зоной является средняя по длине часть цилиндра, где имеется основной контакт с поршнем. На внутренней посадочной (внутреней, внешней и торцевых поверхностях цилиндра не допускаются задиры, выбоины, вмятины или отколы глубиной более 0,5мм площадью более 1 кв. мм и количеством более двух на каждой поверхности. Износ наружной посадочной поверхности определяют микрометром. При капитальном ремонте износ, задиры, выбоины, вмятины не допускаются.
Клапана в сборе Резьба корпуса клапана и регулировочного винта осматриваются и проверяются непроходными резьбовыми калибрами. Смятие или срез более двух ниток резьбы, забоины, вмятины, не допускаются. Сопрягаемые поверхности диска и корпуса впускных клапанов должны быть притерты и не иметь повреждений(рисок, вмятин и т.п.). Диски клапанов должны свободно , без заеданий, перемещаться относительно дистанционного кольца под действием силы тяжести. При деповском ремонте просадка пружины предохранительного клапана допускается до высоты 13,5 мм и не допускается – при капитальном ремонте. Предохранительные клапана регулируются с помощью гидропресса на открытие при давлении жидкости(4,5+-0,5) Мпа, (45+-0,5) кгс/ кв.см - у наклонных гасителей (3,5+-0,5) Мпа – у вертикальных и горизонтальных. Регулировочный винт стопорят кернением.

Продолжение таблицы 2.5

   
Детали корпуса Корпус гасителя, проушину штоковую, кожух и гайку очищают, промывают моющими растворами, обдувают сжатым воздухом, осматривают обмеряют, состояние резьб проверяют непроходными калибрами, резьбу М115х1,5-резьбовым шаблоном. Резьбовые участки проушины, корпуса и кожуха восстанавливают наплавкой с последующей нарезкой резьбы. При значительных повреждениях (смятие, срез более двух ниток) резьбы проушины или кожуха у гасителей черт.45.30.045 в деповском ремонте допускается прикреплять кожух с помощью трёх болтов М10х20, установленных радиально через 120 град. По окружности резьбы. Используют непроходные резьбовые калибры и шаблоны резьбовые, штангенциркуль, оправки, сварочный агрегат, токарный станок.
Манжеты штока Манжеты у гасителя черт.45.30.045 устанавливают в сальниковой обойме в противоположные стороны: одна манжета для предохранения от утечек жидкости, вторая-для защиты от попадания пыли и влаги в гаситель. Перед сборкой манжеты выдерживают в используемой рабочей жидкости не мене 10 минут. Проверяют манжетные пружины на конусном калибре с рисками, сделанными по размерам п/с 50,4-0,1 и п/с 49,5-0,1мм (калибр ГК17, приложение Г). При надевании на конус пружина должна под собственным весом размещаться между рисками. Контроль прочности замка производят протаскиванием калибра диаметром 55+-0,1мм через свернутую пружину.
Алюминиевые кольца При деповском ремонте уплотнительные алюминиевые кольца заменяют при деформации или уменьшении толщины до 1,7мм и менее. При капитальном ремонте устанавливают новые кольца.
Рабочая жидкость Масло ВМГЗ по ТУ 38.101.479-00 или масло МВП (ГОСТ 1805-76), АМГ-10(ГОСТ 6794-75) заливают в гаситель в количестве от 0,9 до 1л. Предварительно фильтруют через полутомпаковую сетку нормальной точности 016 Н (ГОСТ 6613-86). В деповском ремонте допускается смесь свежего масла с восстановленным в соотношении 1:1 при соблюдении технологии и контроле регенерации отработанной рабочей жидкости.
Сборка гидрогасителя Сборку гидрогасителя производят на специализированных верстаках, оснащенных механизированными зажимами. Перед сборкой шток, внутреннюю поверхность металлических втулок и манжет следует покрыть жировой смазкой ЦИАТИМ 221(ГОСТ 9433-80), или ЦИАТИМ 279 (ГОСТ 14296-78), или тормозными смазками ЖТ-79Л по ТУ 32-ЦТ-1176. При сборке необходимо, чтобы полости циндра были заполнены рабочей жидкостью. После сборки гаситель прокачивают вручную(сжимают и растягивают) для удаления воздушных пузырей из полостей цилиндра, что определяется по неупругому сопротивлению гасителя – оно должно быть большим и плавным.

Продолжение таблицы 2.5

   
Испытания на стенде Гидрогасители в сборе испытывают на стенде методом гармонических колебаний с записью рабочей диаграммы. При этом визуально определяют качество сборки манжетного уплотнения и надежность крепления внутренних деталей гасителя гайкой корпуса, отсутствие протечек рабочей жидкости через уплотнения штока и корпуса и через сильфон. По рабочей диаграмме выявляют отсутствие внутренних дефектов и качество сборки, состояние втулок в проушинах. При электронной записи по показаниям компьютера определяют исправность и дефекты гасителя. При механической записи измеряют длину и ширину диаграммы. По этим измерениям с помощью таблицы определяют параметр сопротивления, который должен быть при деповском ремонте в пределах от 90 до 125 кНс/м и при капитальном – от 100 до 125 кНс/м. Испытания проводят на стендах ЭНГА или ПКБ ЦВ. По форме диаграммы выявляют возможные дефекты гидрогасителей. После испытаний гаситель укладывают в горизонтальное положение на два часа для проверки герметичности.
Окончательная сборка и маркирование У гасителей, прошедших испытание, плотно наворачивают проушину на шток и устанавливают стопорный винт. Если отверстие в штоке не совпало с резьбовым отверстием в проушине, то высверливают посадочное место на штоке в сборе, а затем заново нарезают резьбу в проушине и устанавливают стопорный винт очередного типоразмера. Винт закернивают в паз от самоотвинчивания в эксплуатации. Допускается установка пружинной шайбы Ø 24 65Г (ГОСТ 6402-70) между штоком и проушиной взамен стопорного винта при наличии выточки в торце штока Ø 37,4мм и глубиной 4 мм и затяжкой проушины по резьбе. Наворачивают кожух на проушину и устанавливают стопорный болт кожуха. При несовпадении отверстий на кожухе и верхней проушине, просверлить отверстия всборе на сверлильном станке. При значительных повреждениях резьбы головки или кожуха допускается прикреплять кожух тремя или четырьмя болтами М10x20, установленными радиально и равномерно по окружности головки. Собранный гаситель маркируют.
Маркирование гидрогасителя Гидрогаситель, признанный годным к постановке на вагон маркируют. Маркировка производится в следующем порядке: · гидрогаситель уложить на верстак горизонтально, закрепить; · бормашинкой удалить все старые номера и клейма; · на нижней головке гидрогасителя зачистить место для постановки клейма; · на зачищенное место нанести ударным способом номер гидрогасителя, условный номер предприятия, личное клеймо исполнителя, месяц ремонта, год ремонта
Проушина гасителя При ДР диаметр отверстия проушин Ø 50,6 мм не более, контролируют калибром ГК-6. Осматривают и проверяют непроходным калибром резьбу М 42х2-7Н и резьбовым шаблоном – резьбу М115х1,5-8g. Поврежденные резьбы восстанавливают наплавкой с последующей механической обработкой до чертежных размеров. Допускается ремонт постановкой ремонтной втулки. Проушины не должны иметь трещин или отколов более 4 мм.
Валик крепления гасителя Износ валика контр.штангенциркулем или калибром. Доп.износ при деповском ремонте не более 0,4 мм по диаметру. При к.р. износ валиков не допускается. Валик ремонтируют наплавкой с последующей мех.обраб.

 

 

Виды неразрушимого контроля.

Неразрушающий контроль (НК) – это проверка, контроль, оценка надежности параметров и свойств конструкций, оборудования либо отдельных узлов, без вывода из строя (эксплуатации) всего объекта.

Основным отличием и безусловным преимуществом неразрушающего контроля от других видов диагностики является возможность оценить параметры и рабочие свойства объекта, используя способы контроля, которые не предусматривают остановку работы всей системы, демонтажа, вырезки образцов. Исследование проводится непосредственно в условиях эксплуатации. Это позволяет частично исключить материальные и временные затраты, повысить надежность контролируемого объекта.

Благодаря неразрушающему контролю выявляются опасные и мелкие дефекты: заводские браки, внутренние напряжения, трещины, микропоры, пустоты, расслоения, включения и многие другие, вызванные, в том числе, процессами коррозии.

Своевременное обнаружение дефектов эксплуатационного (усталостного) и заводского происхождения в ответственных деталях железнодорожного подвижного состава позволяет обеспечить безопасность движения и приносит огромный экономический эффект. Решение этой задачи достигается за счет использования современных методов неразрушающего контроля, основанных на взаимодействии физических полей, излучений и потоков частиц со структурой материала контролируемого изделия. Очень важно, что данные методы, в отличие от разрушающего контроля, могут быть применены ко всей партии выпускаемых или ремонтируемых изделий, а также в процессе их эксплуатации. Кроме обнаружения дефектов, методы неразрушающего контроля могут применяться для измерения толщины стенок изделий, диаметра прутков, толщины покрытий, а также для контроля структуры и состава вещества

Для проведения неразрушающего контроля металлоизделий используют специальные приборы — дефектоскопы. Основной задачей этой группы приборов является определение наличия или отсутствия в контролируемом изделии дефектов.

Качество проведения неразрушающего контроля определяется его достоверностью. Достоверный контроль изделий обеспечивается в том случае, если технический персонал обладает необходимыми знаниями основ физических процессов, происходящих при выполнении операций контроля, а также навыками проведения этих операций и расшифровки их результатов.

Среди различных видов неразрушающего контроля на железнодорожном транспорте наиболее широкое распространение получили акустический, магнитный и вихретоковый методы контроля металлоизделий.

Акустический метод неразрушающего контроля основан на регистрации параметров упругих волн, возникающих или возбуждаемых в объекте (рисунок 1). Чаще всего используют упругие волны ультразвукового диапазона (с частотой колебаний выше 20 кГц). Этот метод также называют ультразвуковым.

Главная отличительная особенность данного метода состоит в том, что в нем применяют и регистрируют не электромагнитные, а упругие волны, параметры которых тесно связаны с такими свойствами материалов, как упругость, плотность, анизотропия (неравномерность свойств по различным направлениям) и др.

Рисунок 1 – Результат акустического метода неразрушающего контроля

Ep – глубина изделия, D – расстояние от точки ввода ультразвука до дефекта

Акустические свойства твердых материалов и воздуха настолько сильно отличаются, что акустические волны отражаются от тончайших зазоров (трещин, непроваров) шириной 10-6...10-4 мм.

Этот вид контроля применим ко всем материалам, достаточно хорошо проводящим акустические волны: металлам, пластмассам, керамике, бетону и т.д. Колебания в исследуемый объект вводятся в импульсном или непрерывном режимах с помощью пьезоэлектрического преобразователя сухим контактным, контактным через жидкую среду или бесконтактным способом через воздушный зазор с помощью электромагнитно-акустического преобразователя. С помощью акустических методов измеряют толщины стенок изделий, выявляют разнообразные дефекты и неоднородности структуры, определяют геометрические характеристики изделий.

Ультразвуковой контроль ответственных деталей подвижного состава во многих случаях предоставляет уникальную возможность снизить расходы на проведение ремонта за счет значительного сокращения объемов монтажных и демонтажных работ. Этот метод незаменим при проведении контроля, например, подступичных частей и буксовых шеек колесных пар в сборке с колесными центрами и кольцами роликоподшипников.

Широкое применение «безразборных» технологий ультразвукового контроля, непрерывное совершенствование схем и конструкций ультразвуковых дефектоскопов, развитие компьютерных технологий регистрации и обработки результатов контроля, разработка автоматизированных комплексов неразрушающего контроля деталей подвижного состава – всё это открывает более широкие перспективы применения ультразвуковых методов контроля ответственных деталей подвижного состава и является одним из важнейших направлений в обеспечении высокого уровня качества ремонта и безопасности движения поездов.

Эти методы имеют следующие недостатки: необходимость акустического контакта преобразователя, повышенные требования к чистоте поверхности изделия, влияние сторонних шумов на результаты измерений, воздействие температуры изделия и др. Все эти недостатки приводят к возрастанию погрешностей измерения.

Особое место среди акустических методов контроля занимает метод акустической эмиссии (акустико-эмиссионный). Этот метод основан на регистрации упругих волн, возникающих в момент образования и роста трещин в детали, находящейся под нагружением.

Одной из основных отличительных черт метода является отсутствие внешнего источника звуковых сигналов. Источником акустических волн является сама трещина, поскольку при достаточно сильной нагрузке она «подрастает» и излучает акустические импульсы («похрустывание»), которые принимаются акустическими преобразователями, установленными на контролируемом изделии.

Акустико-эмиссионный метод наиболее удобен для контроля сосудов, работающих под большим давлением и мостовых конструкций, т.е. объектов, подвергающихся нагружению в естественных условиях. В других случаях для реализации акустико-эмиссионного метода контроля следует создавать специализированные нагружающие устройства. В настоящее время данный метод применяют в опытном порядке для контроля литых боковых рам и надрессорных балок тележек грузовых вагонов, а также котлов нефтебензиновых цистерн.

Магнитные методы неразрушающего контроля применяют для выявления дефектов в деталях, изготовленных из ферромагнитных материалов (сталь, чугун), т.е. материалов, которые способны существенно изменять свои магнитные характеристики под воздействием внешнего магнитного поля.

Магнитопорошковый метод основан на выявлении магнитных полей рассеяния, возникающих над дефектами в детали при ее намагничивании, с использованием в качестве индикатора ферромагнитного порошка или магнитной суспензии (рисунок 2). Этот метод среди других методов магнитного контроля нашел наибольшее применение.

1 – магнитное поле; 2 – дефект; 3 – искажение магнитного поля; 4 – магнитная суспензия; 5 – скопление частиц

Рисунок 2 – Магнитный метод неразрушающего контроля

На железнодорожном транспорте магнитному контролю подвергают следующие объекты подвижного состава:

-детали ударно-тягового и тормозного оборудования;

-рамы тележек различных моделей в сборе и по элементам:

-шкворни;

-оси всех типов колёсных пар всех типов, как в сборе, так и в свободном состоянии;

-свободные кольца буксовых подшипников, а также внутренние кольца, напрессованные на шейки оси;

-упорные кольца, стопорные планки, пружины, болты и т.п.

Примерно 80 % всех подлежащих контролю деталей из ферромагнитных материалов проверяется именно этим методом. Высокая чувствительность, универсальность, относительно низкая трудоемкость контроля и простота - все это обеспечило ему широкое применение в промышленности вообще и на транспорте, в частности. Основным недостатком данного метода является сложность его автоматизации.

Вихретоковый (электромагнитный) вид неразрушающего контроля основан на анализе взаимодействия электромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых в контролируемом объекте.

В этом методе используется эффект воздействия вихревых токов, возбуждаемых в проводящем образце, на электрические параметры преобразователя.

Вихревые токи – это токи, возникающие в замкнутом контуре при изменении магнитного потока.

Его применяют только для контроля изделий из электропроводящих материалов. Вихревые токи возбуждают в объекте с помощью преобразователя в виде катушки индуктивности, питаемой переменным или импульсным током. Приемным преобразователем (измерителем) служит та же или другая катушка.

Объектами вихретокового контроля (ВТК) могут быть только электропроводящие детали, т.к. вихревые токи возникают в материалах, проводящих электрический ток (металлы, сплавы, графит, полупроводники) (рисунок 3).

Интенсивность и распределение вихревых токов в объекте зависят от его геометрических размеров, электрических и магнитных свойств материала, от наличия в материале нарушений сплошности, взаимного расположения преобразователя и объекта, т.е. от многих параметров.

1 - катушка индуктивности; 2 – вихревые токи; 3 – объект контроля;

4 – приёмный измеритель

Рисунок 3 – Вихретоковый метод неразрушающего контроля

К числу главных достоинств вихретокового метода следует отнести его универсальность и широкие функциональные возможности, которые до настоящего времени еще не до конца использованы. В то же время применение этого метода затрудняется тем, что при контроле одного параметра другие являются мешающими – это и является недостатком. Для разделения параметров используют раздельное или совместное измерение фазы, частоты и амплитуды сигнала измерительного преобразователя, подмагничивание изделия постоянным магнитным полем, ведут контроль одновременно на нескольких частотах, применяют спектральный анализ.

Получаемые таким образом выходные параметры преобразователя одновременно несут информацию об удельной электрической проводимости и магнитной проницаемости материала, о состоянии поверхности изделия и наличии дефектов, о величине зазора между изделием и преобразователем, а также о геометрических размерах изделия. Анализ измеренных параметров позволяет определять геометрические размеры изделий (толщину стенки при одностороннем доступе), оценивать химический состав, структуру материала изделия, внутренние напряжения, обнаруживать поверхностные и подповерхностные (на глубине в нескольких миллиметров) дефекты.

Контроль вихревыми токами выполняют без непосредственного контакта преобразователей с объектом. Это позволяет вести контроль при взаимном перемещении преобразователя и объекта с большой скоростью (до 60 м/с) и облегчает тем самым автоматизацию контроля.

Как бы ни был совершенен тот или иной метод НК, он не обеспечивает в полной мере решения задачи обнаружения дефектов любого типа или вида даже в одном объекте контроля. Поэтому для контроля ответственных деталей железнодорожного подвижного состава с целью большей глубины и полноты контроля применяют систему неразрушающего контроля, представляющую совокупность одного или нескольких методов (вариантов методов). Например, ось колесной пары контролируют как магнитопорошковым методом, так и ультразвуковым.

Любой метод неразрушающего контроля подразумевает выявление определенного вида дефектов. При контроле дефект может быть выявлен или пропущен. Выявление дефекта рассматривается как случайное событие, вероятность наступления которого зависит от множества факторов: размера и ориентации дефекта, глубины его залегания, надёжности дефектоскопической аппаратуры, квалификации оператора и т.д.

Вероятность обнаружения дефектов системой неразрушающего контроля возрастает с увеличением числа применяемых вариантов метода.

 










Последнее изменение этой страницы: 2018-05-30; просмотров: 292.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...