![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Геометрическое определение вероятности
Геометрическое определение обобщает классическое определение вероятности на случай, когда пространство элементарных событий При этом на прямой будем рассматривать лишь промежутки или их объединения, то есть подмножества, которые имеют длину, на плоскости – те подмножества, которые имеют площадь и т.д. Под мерой В этом случае вероятность считается по формуле:
Пример 1. Телефонная линия длиной 2 км, соединяющая пункты Решение. Точка
Пример 2.В эллипс с полуосями 2 и 3 наудачу ставится точка. Какова вероятность того, что она попадет во вписанную в эллипс окружность, центр которой совпадает с центром эллипса? Решение. Точка Пример 3. Две точки независимо друг от друга наудачу выбираются на отрезке 1. Определяем пространство элементарных событий. Пусть Итак, пространство элементарных событий совпадает с квадратом D. Выбрать две точки отрезка 2. Равновозможность элементарных исходов гарантирована методикой проведения случайного эксперимента, поскольку, как сказано в условии задачи, обе точки выбираются на отрезке наудачу. Соответственно, ни один из участков квадрата D не является более предпочтительным, чем любой другой равный ему по площади участок квадрата D. 3. Нас интересует вероятность события Ему соответствует область
Рис. 1 Находим площадь Находим площадь
Согласно геометрическому определению вероятности
Ответ. Пример 4.Для поражения точечной воздушной цели достаточно разрыва снаряда на расстоянии 10 м от неё. Из-за ошибок прицеливания разрыв снаряда равновозможен в любой точке эллипсоида с центром в точки цели и полуосями 20, 20 и 60 м. Какова вероятность того, что цель будет поражена? Решение. Точка Событие Следовательно,
|
||
Последнее изменение этой страницы: 2018-05-27; просмотров: 267. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |