Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена
Пусть генеральные совокупности Х1, Х2, .... свободы к = n — 1. Требуется по исправленным дисперсиям при заданном уровне значимости а проверить нулевую гипотезу, состоящую в том, что генеральные дисперсии рассматриваемых совокупностей равны между собой: H0=D(X1)=D(X2)=D(Xl). Другими словами, требуется проверить, значимо или незначимо различаются исправленные выборочные дисперсии. Итак, в качестве критерия проверки нулевой гипотезы примем критерий Кочрена—отношение максимальной исправленной дисперсии к сумме всех исправленных дисперсий: . Распределение этой случайной величины зависит только от числа степеней свободы к = n— 1 и количества выборок I. Критическую область строят правостороннюю, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости: P[G>Gкр(xkl)]=a Критическую точку Gкр(akl) находят по таблице приложения 8, и тогда правосторонняя критическая область определяется неравенством G>Gкр, а область принятия нулевой гипотезы — неравенством G<Gкр . Обозначим значение критерия, вычисленное по данным наблюдений, через Gнабл и сформулируем правило проверки нулевой гипотезы. Правило. Для того чтобы при заданном уровне значимости а проверить гипотезу об однородности дисперсий нормально распределенных совокупностей, надо вычислить наблюдаемое значение критерия и по таблице найти критическую точку. Если Gнабл<Gкр—нет оснований отвергнуть нулевую гипотезу. Если Gнабл>Gкр — нулевую гипотезу отвергают. Замечание. Если требуется оценить генеральную дисперсию, то при условии однородности дисперсий целесообразно принять в качестве ее оценки среднюю арифметическую исправленных выборочных дисперсий.
|
||
Последнее изменение этой страницы: 2018-05-27; просмотров: 237. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |