Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнение Бернулли для элементарной струйки реальной жидкости. Геометрическая интерпретация уравнения Бернулли.




В идеальной жидкости, в отличие от реальной, отсутствуют силы внутреннего трения (отсутствует вязкость). Благодаря вязкости в реальной жидкости происходят потери механической энергии потока на трение внутри жидкости и о стенки канала. При этом происходит рассеивание (диссипация) энергии. Энергия, потерянная на трение, превращается в теплоту и идет на пополнение запаса внутренней энергии жидкости, а часть ее отводится в виде тепла через стенки канала.

Внутренняя энергия жидкости не может быть непосредственно использована для приведения жидкости в движение и поэтому в гидравлике рассматривается как потеря механической энергии (потеря напора).

Для реальной жидкости равенство нарушается, и вместо него имеем , где – потеря напора на участке 1–2. Тогда для элементарной струйки реальной жидкости уравнение Бернулли примет вид

Таким образом, полный напор вдоль струйки реальной жидкости уменьшается. Для характеристики относительного изменения полного напора на единицу длины вводится понятие о гидравлическом уклоне

Например, на участке трубопровода 1–2

где – длина участка 1–2.

Таким образом, гидравлическим уклоном называется отношение потери напора к длине, на которой она происходит. Кроме того, вводится еще понятие о пьезометрическом уклоне

16 Уравнение Бернулли для потока вязкой жидкости.

При переходе от элементарной струйки идеальной жидкости к потоку вязкой жидкости, имеющему конечные размеры и огра­ниченному стенками, необходимо будет учесть, во-первых, неравно­мерность распределения скоростей по сечению и, во-вторых, потери энергии (напора). То и другое является следствием вязкости жид­кости.

При движении вязкой жидкости вдоль твердой стенки, напри­мер в трубе, происходит (торможение потока вследствие влияния вязкости, а также в результате действия сил молекулярного сцеп­ления между жидкостью и стенкой. Поэтому наибольшей величины скорость достигает в центральной части потока; по мере прибли­жения к стенке скорость уменьшается практически до нуля. Полу­чается распределение скоростей, подобное тому, которое показано на рис. 28.

Неравномерное распределение скоростей означает скольжение (сдвиг) одних слоев или частей жидкости по другим, вследствие чего возникают касательные напряжения, т.е. напряжения тре­ния. Кроме того, движение вязкой жидкости часто сопровождается вращением частиц, вихреобразованиями и перемешиванием. Все это требует затраты энергии, поэтому удельная энергия движущей­ся вязкой жидкости (полный напор) не остается постоянной, как в случае идеальной жидкости, а постепенно расходуется на преодо­ление сопротивлений и, следовательно, уменьшается вдоль потока.

Прежде чем приступить к рассмотрению уравнения Бернулли для потока вязкой жидкости сделаем следующее допущение: будем считать, что в пределах рассматриваемых поперечных сечений потока справедлив основной закон гидростатики, т. е., гидростатиче­ский напор есть величина одинаковая для всех точек данного сечения:

Тем самым мы предполагаем, что при движении жидкости от­дельные струйки оказывают друг на друга в поперечном направле­нии такое же давление, как слои жидкости в неподвижном состоя­нии. Это будет соответствовать действительности и может быть до­казано теоретически в том случае, когда течение в данных попе­речных сечениях является параллельноструйным. Поэтому именно такие (или близкие к ним) поперечные сечения мы и будем рас­сматривать.

 

 

Введем понятие мощности потока. Мощностью потока в данном сечении будем называть полную энергию, которую проносит поток через это сечение в единицу времени. Так как в различных точках поперечного сечения потока частицы жидкости обладают различ­ной энергией, то сначала выразим элементарную мощность, т.е. мощность элементарной струйки, в виде произведения полной удельной энергии жидкости в данной точке на элементарный весо­вой расход:

Мощность всего потока найдется как интеграл от предыдущего выражения по всей площади S, т. е.

или, учитывая сделанное допущение,

Найдем среднее по сечению значение полной удельной энергии жидкости делением полной мощности потока на весовой расход. Используя выражение, будем иметь

Умножив и разделив последний член на uср2 , получим

где a — безразмерный коэффициент, учитывающий неравномер­ность распределения скоростей равный

Для обычного распределения скоростей коэффици­ент a всегда больше единицы, а при равномерном распределении скоростей равен единице.

Возьмем два сечения реального потока, первое и второе, и обо­значим средние значения удельной энергии (полного напора) жид­кости в этих сечениях соответственно Нср1 и Нср2; тогда

где Sh—суммарная потеря удельной энергии (напора) на участ­ке между рассматриваемыми сечениями.

Используя формулу (4.16), предыдущее уравнение можно пере­писать так:

Это и есть уравнение Бернулли для потока вязкой жидкости. От аналогичного уравнения для элементарной струйки идеальной жид­кости полученное уравнение отличается членом, представляющим собой потерю удельной энергии (напора), и коэффициентом, учи­тывающим неравномерность распределения скоростей. Кроме того, скорости, входящие в это уравнение, являются средними по сече­ниям.

Уравнение Бернулли применимо не только для жидко­стей, но и для газов при условии, что скорость их движения значи­тельно меньше скорости звука.

Если для струйки идеальной жидкости уравнение Бернулли представляет собой закон сохранения механической энергии, то для реального потока оно является уравнением баланса энергии с учетом потерь. Энергия, теряемая жидкостью на рассматриваемом участке течения превращается в другую форму—тепловую. Правда, тепловая энер­гия непрерывно рассеивается, поэтому повышение температуры часто бывает практически мало заметным. Этот процесс преобра­зования механической энергии в тепловую является необратимым, т. е. таким, обратное течение которого (превращение тепловой энергии в механическую) невозможно.

Уменьшение среднего значения полной удельной энергии жид­кости вдоль потока, отнесенное к единице его длины, называется гидравлическим уклоном. Изменение удельной потенциальной энер­гии жидкости, отнесенное к единице длины, называется пьезомет­рическим уклоном. Очевидно, что в трубе постоянного диаметра с неизменным распределением скоростей указанные уклоны оди­наковы.

17 Практические приложения уравнения Бернулли для определения скорости и расхода жидкости.

Рассмотрим применение уравнения Бернулли для определения ско­ростей и расходов и времени истечения жидкостей из резервуаров.

Принципы измерения скорости и расхода жидкости. Для определения скоростей и расходов жидкостей в промышленной практике обычно при­меняются дроссельные приборы и пневмометрические трубки.

Принцип работы пневмометрических трубок, напри­мер трубки Пито-Прандтля, может быть пояснен с помощью рис. II-16. В каждом сечении разность уровней жидкости в трубках, изображенных на рисунке, выражает скоростной напор hск в точке сечения, лежащей на оси трубы.

Разность уровней рабочей жидкости в трубках удобнее измерять не посредством пьезометрических трубок, как показано на рис. II-16, а при помощи дифференциального манометра (рис. II-17). Его U-образная трубка заполнена жидкостью, которая не смешивается с рабочей и имеет значительно большую плотность, чем последняя (например, вода или спирт – при работе с газами или ртуть – при работе с капельными жидкостями). Это позволяет измерять перепады давлений в случае значительного избыточного давления (или вакуума) в трубопроводе при относительно небольшой высоте прибора.

По результатам измерений находят максимальную скорость жидкости вдоль оси трубопровода. Для определения средней скорости жидкости либо снимают эпюру распределения скоростей по сечению трубопровода (рис.II-10), передвигая пневмометрическую трубку в различные точки сечения, либо используют соотношения между средней и максимальной скоростями при ламинарном и турбулентном режимах течения. Расход жидкости находят, умножая среднюю ско­рость на площадь поперечного сечения трубопровода.

Такой способ определения скорости и расхода жидкости прост, но недостаточно точен из-за трудности установки пневмометрических трубок строго вдоль оси трубопровода.

Более широко распространено определение скоростей и расходов жидкостей с помощьюдроссельных приборов, принцип работы которых основан на измерении перепада давлений при изменении поперечного сечения трубопровода. При искусственном сужении сечения потока посредством дроссельного прибора скорость и, соответственно, кинетическая энергия потока в этом более узком сечении возрастают, что приводит к уменьшению потенциальной энергии давления в том же сече­нии. Поэтому, измерив дифференциальным манометром перепад давлений между сечением трубопровода до его сужения и сечением в самом сужении (или вблизи него), можно вычислить изменение скорости между сечениями, а по нему — скорость и расход жидкости.

В качестве дроссельных приборов используют мерные диафрагмы, сопла и трубы Вентури.

Мерная диафрагма (рис. II-17) представляет собой тонкий диск с отверстием круглого сечения, центр которого расположен на оси трубы. Мерное сопло (рис. II-18) является насадкой, имеющим плавно закругленный вход и цилиндрический выход. Дифманометры мерных сопел (а также диафрагм) присоединяют к трубопроводу через кольцевые камеры а, соединенные с внутренним пространством трубопровода отверстиями, равномерно расположенными по окружности, или двумя каналами b.

Т руба Вентури(рис. II-19) имеет постепенно сужающееся сечение, которое затем расширяется до первоначального размера. Вслед­ствие такой формы трубы Вентури потеря давления в ней меньше, чем в диафрагмах или соплах. Вместе с тем длина трубы Вентури очень велика по сравнению с толщиной диафрагмы или сопла, которые могут быть уста­новлены между фланцами трубопровода.

В трубе Вентури и в сопле площадь сечения сжатой струи S2 = равна площади самого отверстияS0 - - площадь сечения трубопровода, на котором установлен дроссельный прибор. В диа­фрагмеS2 < S0 (рис. II-17).

Считая трубопровод горизонтальным, запишем для двух сечений, перепад давлений между которыми измеряется дифференциальным мано­метром, уравнение Бернулли. В соответствии с обозначениями на рис. II-17 и пренебрегая потерей напора, имеем

откуда

где h – перепад (разность) давлений, измеряемый дифференциальным манометром и выражаемый в метрах столба рабочей жидкости.

Объемный расход жидкости Q в сечении S0 отверстия диафрагмы (а значит, и в трубопроводе) будет равен

(II,54)

где a — поправочный коэффициент (a< 1); этим коэффициентом учитывается уменьше­ние скорости w0 в сечении S0 no сравнению со скоростью w2 из-за сужения струи (S0 > S2), а также потеря напора в диафрагме.

Коэффициент a называется коэффициентом расхода дроссельного прибора. Его значение зависит от значения критерия Рейнольдса для жидкости и от отношения диаметра отверстия дроссельного прибора к диаметру трубопровода:

(II,55)

Значения a, определенные опытным путем, приводятся в специальной и справочной литературе.

Диаметр дроссельного устройства обычно в 3-4 раза меньше диаметра трубопровода, поэтому величиной (d2/d1)2 в уравнении (II,54) можно в первом приближении пренебречь и находить расход жидкости по урав­нению

(II,56)

Среднюю скорость жидкости в трубопроводе определяют, разделив Q на площадь сечения трубопровода. Опуская индексы "1" у w1 и d1, получим

(II,57)

В случае работы со сжимаемыми жидкостями (газом или паром) при больших перепадах давлений в уравнения (II,56) и (II,57) вводят еще один поправочный коэффициент, учитывающий изменение плотности газа (пара).

Истечение жидкостей. Определим расход жидкости при ее истечении через круглое отверстие в тонком днище открытого сосуда, в котором поддерживается постоянный уро­вень H жидкости (рис. II-20, а).

Вытекающая из такого отверстия струя резко сжимается при выходе вследствие инерционного движения частиц жидкости, приближающихся внутри сосуда к отверстию по криволинейным траекториям (некоторые из них даже непосредственно перед выходом еще скользят почти парал­лельно днищу, то есть перпендикулярно оси струи). Расстояние от днища до сжатого сечения (вслед за которым дальнейшее сужение струи из-за увеличения скорости падающей жидкости выражено гораздо слабее) невелико и составляет около половины диаметра отверстия.

Выбрав плоскость сравнения 0—0 параллельной днищу сосуда, напи­шем уравнение Бернулли (считая жидкость идеальной) для сечения 1—1, соответствующего верхнему уровню жидкости в сосуде, и сечения 2—2, плоскость которого проходит через указанное сжатое сечение вытекающей струи:

Для открытого сосуда р1 = р2; кроме того, при постоянном уровне жидкости скорость ее w1 = 0. Пренебрегая небольшим расстоянием от плоскости отверстия в днище сосуда до плоскости сжатого сечения струи, можно принять, что zl - z2 » H. Отсюда

Следовательно

(II,58)

что соответствует известной формуле Торричелли.

При движении реальной жидкости часть напора H теряется на трение и преодоление сопротивления, обусловленного внезапным сужением потока в отверстии. Поэтому скорость реальной жидкости в сжатом сечении:

где j — поправочный коэффициент (j< 1), называемый коэффициентом ско­рости, которым учитываются потери напора при истечении через отверстие.

Объемный расход Q (м3/сек) жидкости равен произведению ее ско­рости w2на площадь сжатого сечения S2 струи. Обозначим отношение S2 площади поперечного сечения S0 отверстия в днище через e. Это отно­шение e = S2/S0 называют коэффициентом сжатия струи.

Тогда

или

(II,59)

Коэффициент a представляет собой коэффициент расхода и выражается произведением коэффициентов скорости и сжатия струи:

a =je (II,60)

Этот коэффициент определяют опытным путем, его значения зависят от значения критерия Re и могут быть найдены в справочниках в зависи­мости от свойств и скорости жидкости, а также от формы отверстия, его размера и удаленности от стенок сосуда.

Из уравнения (II,59) следует, что расход жидкости, вытекающей через отверстие в тонком днище, зависит от высоты постоянного уровня жидко­сти над отверстием и от размера отверстия, но не зависит от формы сосуда. Это уравнение применимо также для определения расхода жидко­сти, вытекающей через отверстие в тонкой боковой стенке сосуда, если считать Н расстоянием от верхнего уровня жидкости до оси отверстия.

Для жидкостей, по вязкости мало отличающихся от воды, можно при­нимать в первом приближении ее a» 0.62. При истечении жидкости через короткий цилиндрический патрубок (насадок) происходит дополнитель­ная потеря напора на входе и выходе жидкости, что приводит к сниже­нию j. Вместе с тем струя при входе в патрубок после некоторого сжатия снова расширяется и вытекает, заполняя все его сечение, т.е. можно счи­тать e = I. В итоге коэффициент расхода жидкости при истечении через насадок оказывается большим, чем при истечении через отверстие, и для воды может быть принят a» 0.82.

Если сосуд, из которого вытекает жидкость, закрыт и давление р2 над жидкостью в нем отличается от наружного давления р1, то при опре­делении расхода по формуле (II,59) вместо H в нее следует подставить , где r — плотность жидкости.

Теперь рассмотрим истечение при переменном уровне жидкости в сосуде с целью определения времени опорож­нения сосудов.

При таком истечении жидкости (рис. II-20,б) ее уровень H в сосуде снижается во времени и, согласно уравнению (II,58), уменьшается также скорость истечения w0. Следовательно, процесс истечения носит неста­ционарный характер.

Определим время, за которое уровень жидкости в сосуде опустится от первоначальной высоты H1 до некоторой высоты H2. За бесконечно малый промежуток времени dt., в соответствии с уравнением (II,59), через отверстие в днище вытечет объем жидкости

dV = Qdt = aS0

где S0 — площадь поперечного сечения отверстия в днище сосуда.

За тот же промежуток времени dt уровень жидкости в сосуде пони­зится на бесконечно малую величину dH, и при постоянной площади поперечного сечения S сосуда убыль жидкости в нем составит

dV = — SdH

Знак минус в правой части указывает на уменьшение высоты жидкости в сосуде.

Приравнивая, согласно уравнению неразрывности потока, эти объемы, получим

aS0 =— SdH

Откуда

Проинтегрируем это выражение, принимая, что коэффициент расхода a постоянен, т.е. не зависит от скорости истечения:

Таким образом, время опорожнения сосуда, имеющего постоянно поперечное сечение, от высоты H1 до высоты H2 составляет

(II,61)

В случае полного опорожнения резервуара H2 = 0 и уравнение (II,61) принимает вид

(II,61а)

Решая задачу о времени опорожнения сосуда, площадь поперечного сечения которого изменяется по высоте (например, при истечении из конических резервуаров, горизонтальных цистерн и т.п.), следует при интегрировании выражения dt. учесть зависимость площади сечения S от уровня Н жидкости, т.е. учесть вид функции S = f(H).

18 Уравнение равномерного движения жидкости (формула Шези).

Равномерное движение жидкости мы можем наблюдать во многих случаях жизни. Это может быть установившееся движение жидкости в каналах, водопроводных трубах и т.п. Условием равномерного движения является постоянство живого сечения, скорости течения и глубины по длине по длине потока.

Для вывода основного уравнения движения жидкости необходимо рассмотреть часть потока, ограниченного сечениями 1 – 1 и 2 – 2 и составить уравнение баланса сил, спроектированных на ось движения потока

Р1 – Р2 + G sin α – Tтр = 0 . (3.48)

Здесь Р1 = р1ω и Р2 = р2ω – суммарные силы гидростатического давления в соответствующих сечениях; G – сила тяжести части потока в объёме W = ωl

G = ρ∙g∙ω∙l, (3.49)

α – угол наклона оси потока;

Рис.3.9 sin α = . (3.50)

Ттр – суммарная сила трения потока о стенки

Ттр = τ0 S = τ0 f l , (3.51)

где τ0∙ – касательные напряжения между жидкостью и стенкой трубы; f – смоченный периметр; l –длина участка трубы, ограниченного сечениями 1- 1 и 2-2.

Если подставить соответствующие значения суммарных сил давления, а также (3.49), (3.50) в уравнение (3.48) и поделить на ρgω, то получим

. (3.52)

Перегруппируем составляющие уравнения (3.53)

. (3.54)

Левая часть уравнения (3.54) в условиях равномерного движения выражает потерю напора на рассматриваемом участке движения жидкости, тогда

,

или

. (3.55)

Поскольку (гидравлический радиус), а (гидравлический уклон), окончательно получим

. (3.56)

Зависимость (3.56) есть основное уравнение равномерного движения жидкости, которое показывает, что касательные напряжения, отнесённые к удельному весу жидкости, равны произведению гидравлического радиуса на гидравлический уклон.

Из уравнения (3.56) можно вывести формулу Шези для определения средней скорости потока.

Многочисленными опытами подтверждается, что при развитом турбулентном движении жидкости, отношение пропорционально средней скорости потока, то есть

, (3.57)

где b – коэффициент пропорциональности, тогда

RI = bv2. (3.58)

 

или средняя скорость равна

. (3.59)

Обозначим , тогда

. (3.60)

 

Формулу (3.60) называют формулой Шези для определения средней скорости потока. Для определения расхода жидкости используют формулу Шези в следующем виде

, (3.61)

где С – скоростной множитель или коэффициент Шези. Он может быть определён по формуле академика Н.Н. Павловского или по формуле Базена.

 










Последнее изменение этой страницы: 2018-05-10; просмотров: 367.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...