Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Билет 9. Взаимное расположение прямой и плоскости в пространстве.




Прямая может лежать на данной плоскости, быть параллельна данной плоскости или пересекать ее в одной точке, см. следующие рисунки.

рис.6.                                  рис.7.                                                   рис.8.

 

 

 

Теорема. Пусть плоскость задана общим уравнением

,

а прямая L задана каноническими уравнениями

или параметрическими уравнениями

, ,

в которых – координаты нормального вектора плоскости , – координаты произвольной фиксированной точки прямой L,

координаты направляющего вектора прямой L. Тогда:

1) если , то прямая L пересекает плоскость в точке,координаты которой можно найти из системы уравнений

; (7)

2) если и , то прямая лежит на плоскости;

3) если и , то прямая параллельна плоскости.

Доказательство. Условие говорит о том, что векторы и не ортогональны, а значит прямая не параллельна плоскости и не лежит в плоскости, а значит пересекает ее в некоторой точке М. Координаты точки М удовлетворяют как уравнению плоскости, так и уравнениям прямой, т.е. системе (7). Решаем первое уравнение системы (7) относительно неизвестной t и затем, подставляя найденное значение t в остальные уравнения системы, находим координаты искомой точки.

Если , то это означает, что . А такое возможно лишь тогда, когда прямая лежит на плоскости или параллельна ей. Если прямая лежит на плоскости, то любая точка прямой является точкой плоскости и координаты любой точки прямой удовлетворяют уравнению плоскости. Поэтому достаточно проверить, лежит ли на плоскости точка . Если , то точка – лежит на плоскости, а это означает, что и сама прямая лежит на плоскости.

Если , а , то точка на прямой не лежит на плоскости, а это означает, что прямая параллельна плоскости.

Теорема доказана.

Билет 10. Признак Перпендикулярности Прямой И Плоскости. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.

Доказательство:
Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда прямая а проходит через точку А пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости .
Проведем произвольную прямую х через точку А в плоскости и покажем, что она перпендикулярна прямой а. Проведем в плоскости произвольную прямую, не проходящую через точку А и пересекающую прямые b, c и х. Пусть точками пересечения будут В, С и Х.
Отложим на прямой а от точки А в разные стороны равные отрезки АА1 иАА2. Треугольник А1СА2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА1=АА2). по той же причине треугольник А1ВА2 тоже равнобедренный. Следовательно, треугольники А1ВС и А2ВС равны по трем сторонам.
Из равенства треугольников А1ВС и А2ВС следует равенство углов А1ВХи А2ВХ и, следовательно равенство треугольников А1ВХ и А2ВХ по двум сторонам и углу между ними. Из равенства сторон А1Х и А2Х этих треугольников заключаем, что треугольник А1ХА2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямая а перпендикулярна плоскости . Теорема доказана.

 

Билет 11.Случаи взаимного расположения плоскостей:

рис. 24         плоскости а и в пересекаются

плоскости а и в параллельны

Свойства параллельных плоскостей:

1. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

2. Отрезки параллельных прямых, заключённые между параллельными плоскостями, равны.

Определение расстояния между точкой и плоскостью, прямой и плоскостью, между плоскостями и скрещивающимися прямыми

Определение расстояния между: 1 — точкой и плоскостью; 2 — прямой и плоскостью; 3 — плоскостями; 4 — скрещивающимися прямыми рассматривается совместно, так как алгоритм решения для всех этих задач по существу одинаков и состоит из геометрических построений, которые нужно выполнить для определения расстояния между заданными точкой А и плоскостью а. Если и есть какое-то различие, то оно состоит лишь в том, что в случаях 2 и 3 прежде чем приступить к решению задачи, следует на прямой m (случай 2) или плоскости /3 (случай 3) отметить произвольную точку А. При определении расстояния между скрещивающимися прямыми предварительно заключаем их в параллельные плоскости а и /3 с последующим определением расстояния между этими плоскостями.

 

Параллельность двух плоскостей

Определение. Две плоскости называются параллельными , если они не имеют общих точек.

Если плоскость α параллельна каждой из двух пересекающихся прямых, лежащих в другой плоскости β, то эти плоскости параллельны.

Если две параллельные плоскости пересечены третьей, то она оставляет на этих плоскостях параллельные следы.

Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.

ОтДва угла с соответственно параллельными и одинаково направленными сторонами равны и лежат в параллельных плоскостях. резки параллельных прямых, ограниченные двумя параллельными плоскостями, равны.

нахождение расстояния между двумя параллельными прямыми

1) Запишите уравнение плоскости, перпендикулярной заданным прямым, её нормальным вектором является направляющий вектор любой из заданных прямых, и возьмите точку, например, первой прямой.

2) найдите точку пересечения второй прямой и найденной плоскости, для чего уравнение прямой придётся переводить в параметрический вид.

3) найдите расстояние между найденной точкой пересечения и точкой первой прямой, через которую проводили плоскость. Это и будет искомое расстояние.

12).Признак перпендикулярности плоскостей факт

Две плоскости называются перпендикулярными (взаимно перпендикулярными), если они пересекаются под прямым углом, т.е. все четыре двугранных угла, образованные при пересечении этих плоскостей --- прямые.

Справедлива следующая теорема (необходимое и достаточное условие перпендикулярности плоскостей). Две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через прямую, перпендикулярную другой.

Одна из частей этой теоремы (достаточность) есть признак перпендикулярности двух плоскостей.










Последнее изменение этой страницы: 2018-06-01; просмотров: 364.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...