Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Степень кинематической неопределимости сооруженияСтр 1 из 8Следующая ⇒
Содержание Лекция девятнадцатая. расчет статически неопределимых систем методом перемещений на силовое воздействие .............................. 4 Лекция двадцатая. расчет статически неопределимых систем методом перемещений на температурные и кинематические воздействия 41 Лекция двадцать первая. учет симметрии статически неопределимых сооружений при их расчете методом перемещений 61 Лекция двадцать вторая. расчет статически неопределимых систем методом перемещений в матричной форме 71 Библиографический список................................................ 103
Лекция девятнадцатая Расчет статически неопределимых систем методом перемещений на силовое воздействие 19.1. Степень кинематической неопределимости сооружения 19.2. Основная система метода перемещений 19.3. Система канонических уравнений метода перемещений 19.4. Стандартные задачи метода перемещений в расчетах на прочность 19.5. Определение коэффициентов при неизвестных и свободных членах системы канонических уравнений 19.6. Определение внутренних усилий в заданном сооружении. Промежуточные и окончательная проверки правильности расчета 19.7. Пример расчета рамы на силовое воздействие методом перемещений 19.8. Учет продольных сил в расчетах сооружений методом перемещений 19.9. Вопросы для самопроверки 19.10. Рекомендуемая литература Степень кинематической неопределимости сооружения Расчет статически неопределимых систем методом сил на различные воздействия сводится к определению усилий в лишних связях из системы канонических уравнений этого метода. Вычисление внутренних усилий в различных элементах сооружения и построение их эпюр в методе сил производится в основной системе, как правило, статически определимой, испытывающей заданные воздействия и воздействия усилий в лишних связях. Таким образом, выявление напряженно-деформированного состояния сооружений в расчетах методом сил начинается с получения картины распределения внутренних усилий и завершается вычислением перемещений отдельных узлов и сечений сооружения (см. Крамаренко А.А. Лекции по строительной механике стержневых систем. Ч. 3. Статически неопределимые системы. Метод сил: Курс лекций / А.А. Крамаренко, Л.А. Широких. – Новосибирск: НГАСУ, 2002. – Лекция шестнадцатая). Возможен принципиально иной подход к расчету сооружений, когда выявление их напряженно-деформированных состояний начинается с определения перемещений от заданных воздействий и завершается построением эпюр внутренних усилий. Такой подход в расчетах сооружений реализуется в методе перемещений. В методе перемещений сохраняются допущения, ранее принятые при расчете сооружений методом сил, а именно: материал, из которого изготовлены элементы сооружений, подчиняется закону Гука; перемещения отдельных сечений и узлов сооружений малы по сравнению с их геометрическими размерами. C учетом сформулированных допущений сооружения можно рассматривать как линейно-деформируемые системы, для которых справедлив принцип независимости действия сил и вытекающий из него принцип пропорциональности. За неизвестные в методе перемещений принимаются перемещения узлов от заданных воздействий: линейные перемещения шарнирных и жестких узлов Z1 и Z2 и повороты жестких узлов Z3 (рис. 19.1,а,б). Суммарное количество неизвестных угловых (nθ) и линейных (nΔ) перемещений узлов называется степенью кинематической неопределимости сооружения. nkin = nθ + nΔ. (19.1) Число неизвестных угловых перемещений nθ равно количеству жестких узлов сооружения. Для сооружений, в которых перемещения от внешних воздействий обусловлены преимущественно изгибными деформациями, при определении числа независимых линейных перемещений узлов вводятся дополнительные допущения: 1. Элементы сооружений считаются нерастяжимыми и несжимаемыми, т.е. пренебрегают изменением их длин под действием продольных сил. 2. Предполагается, что длины хорд искривленных стержней равны их первоначальным длинам, т.е. А′В′ = АВ (рис. 19.2). Считая сформулированные допущения справедливыми, число независимых линейных перемещений узлов сооружения nΔ можно определить по его шарнирной схеме, полученной из заданного сооружения введением во все жесткие узлы, включая и опорные, режущих цилиндрических шарниров. Степень свободы полученной таким образом шарнирной схемы будет равна числу независимых линейных перемещений узлов заданной системы. Для подсчета количества степеней свободы плоской шарнирной схемы W используют формулу: W = 2Y − C − Co, (19.2) где Y – число узлов; C – число стержней, соединяющих узлы; Co – число опорных связей. Пример 19.1.1. Определить степень кинематической неопределимости рам, показанных на рисунке 19.3. Рис. 19.3,а: nθ = 5, так как рама имеет пять жестких узлов (А, B, C, D, E); nΔ = W = 2Y − C − Co = 2 · 6 − 7 − 2 = 3 (узлы шарнирной схемы 1 – 6; стержни, соединяющие эти узлы: 12, 23, 45, 56, 14, 25, 36; опорные связи 44′, 66′); nkin = nθ + nΔ = 5 + 3 = 8. Рис. 19.3,б: nθ = 2 (узлы А и В); nΔ = W = 2 · 2 − 1 − 3 = 0 (узлы шарнирной схемы 1 и 2; стержень, соединяющий эти узлы 12, опорные связи 11′, 22′, 22′′); nkin = 2 + 0 = 2. Рис. 19.3,в: nθ = 3 (узлы А, В, С); nΔ = W = 2 · 7 − 6 − 6 = 2 (узлы шарнирной схемы 1 – 7; стержни, соединяющие эти узлы 12, 23, 34, 45, 56, 67; опорные связи 11′, 22′, 33′, 55′, 66′, 77′); nkin = = 3 + 2 = 5.
Рис. 19.3
|
||
Последнее изменение этой страницы: 2018-06-01; просмотров: 270. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |