Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Свойства выборочных средних и дисперсий1. Если объем выборки достаточно велик, то на основе закона больших чисел с вероятностью, как угодно близкой к достоверности, можно утверждать, что средняя арифметическая
2. Ошибка вычисления генеральной средней
Ошибка вычисления среднего квадратического отклонения генеральной совокупности по среднему квадратическому отклонению выборки зависит от ее объема и равна
3. Если случайная величина х в генеральной совокупности имеет нормальное распределение со средней
4. Когда дисперсия
где s2 — дисперсия большой выборки объема n, вычисляемая по формуле:
5. Приведенная выше связь дисперсии выборочных средних с дисперсией генеральной совокупности
действительна для повторных выборок. Для бесповторных выборок эта связь выражается зависимостью
где n — объем выборки; N — объем генеральной совокупности. Если N по сравнению с n очень велико, что практически всегда имеет место, то для бесповторных выборок можно пользоваться для вычисления Из свойств выборочных средних и дисперсий следует, что точность вычислений средних арифметических и дисперсий или средних квадратических отклонений генеральной совокупности по данным выборки из нее зависит от объема выборки, причем точность возрастает с ростом объема выборки. Однако практически не всегда бывает возможным или легко осуществимым взятие больших выборок или проведение большого числа наблюдений. Часто на практике приходится ограничиваться взятием небольших выборок или ограничиваться малым числом наблюдений. В этих случаях важно сделать оценку точности и надежности приближенных равенств
где s - среднее квадратическое отклонение выборки.
Оценка точности вычисления параметров генеральной Совокупности по данным выборки. |
||
|
Последнее изменение этой страницы: 2018-06-01; просмотров: 306. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |