Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Осесимметричные оболочки вращения. Их основные нагрузки и напряжения. Уравнения Лапласа.




Оболочка вращения называется осесимметричнойесли она нагружена: силами распределенными симметрично вокруг оси; краевыми силами, распределенными равномерно по параллельному кругу; краевыми моментами, равномерно распределенными по параллельному кругу.

Самым общим случаем нагружения каждой точки поперечного сечения осесимметричных оболочек вращения действуют следующие удельные нагрузки, распределенные равномерно по толщине стенки оболочки:

1. S – меридиональная сила – это сила приходящаяся на единицу длины параллельного круга и растягивающая элемент в меридиональном направлении.

2.Т – кольцевая сила – это сила приходящаяся на единицу длины меридиана и стремящаяся растянуть элемент в направлении параллельного круга.

3.М – меридиональный момент – это момент, приходящийся на единицу длины параллельного круга и стремящийся изменить кривизну элемента в направлении меридиана.

4.К – кольцевой момент – изгибающий момент, приходящийся на единицу длины меридиана и стремящийся изменить кривизну элемента в направлении параллельном меридиана.

5.Q – поперечная сила – это сила, приходящаяся на единицу длины меридиана.

Напряжения, возникающие от действия удельных нагрузок определяются если предположить, что грани элемента к которому приложена нагрузка имеют форму прямоугольника с основанием равным 1 и высотой равной толщине стенки аппарата.

Согласно принципа суперпозиции (независимости действия сил) одноименные силы суммируются

 Вывод: таким образом самым общим случаем нагружения ассиметричные оболочки вращения испытывают действия трех напряжений: меридиональное, кольцевое и касательное, которые учитывают действие всех внутренних удельных нагрузок.

Теория расчета оболочек, которая учитывает действие всех внутренних удельных нагрузок – моментная теория расчета.

На практике при расчете тонкостенных оболочек вращения, находящихся под действием равномерно распределенного давления поперечную силу и изгибающие моменты не учитывают. Такую теорию расчета называют безмоментной теорией расчета оболочек.

Основным уравнением безмоментной теории расчета на прочность ассиметричных оболочек вращения нагруженных давлением является уравнение Лапласа.

,

Р – внутреннее давление;

δ – толщина стенки оболочки.

Лекция №4.

Расчет цилиндрических тонкостенных оболочек, работающих под внутренним давлением.

Тонкостенная оболочка – это оболочка у которой толщина стенки не превышает 10% от внутреннего диаметра.

 

Проектировочный расчет.

Цель расчета: определить размер поперечного сечения: толщину стенки.

Наиболее опасные напряжения: кольцевое, меридиональное, радиальное ( ).

    

кольцевое напряжение в направлении кольцевой растягивающей силы Т определяем из уравнения Лапласа.

Возникающее кольцевое напряжение искажает цилиндр и относительную его деформацию можно рассчитать исходя из закона Гука.

С учетом (1) и (2):

Изменение самой кривизны:

Слагаемым  пренебрегаем, т.к. .

Величина изгибающего момента в поперечном сечении определяется произведением жесткости сечения ( ) на кривизну радиуса:

Т.к. значения изгибающих напряжений в выражении (5) от действия кольцевого момента К много меньше, чем значения растягивающего напряжения от растягивающей силы в выражении (1), то в суммарном значении кольцевого напряжения величиной изгибающих напряжений пренебрегают. Поэтому для проведения проектировочного расчета в качестве исходного кольцевого напряжения достаточно выражения (1).

Меридиональное напряжение стенки цилиндра  можно определить из условия равенства нагрузки на днище аппарата от внутреннего давления и усилия в кольцевом сечении стенки аппарата.

Радиальное напряжение ( ) очень мало и приблизительно считают равным внутреннему давлению с обратным знаком:

 

Окончательно условием прочности будет:

Т.к. большинство аппаратов химического производства сварные, то для повышения надежности аппарата в вычислении расчетной толщины вводят коэффициент прочности сварного шва φ.

Окончательно расчетная толщина стенки:

Полученная толщина стенки должна обеспечивать прочность аппарата, как при рабочих условиях, так и при испытаниях. Поэтому, для вычисления исполнительной толщины стенки расчетная толщина выбирается как максимальная, вычисленная при рабочих условиях и при испытаниях.

Для цилиндра:     

Для сферы:      

Для конических:    

Для эллиптических:

Проверочный расчет.

Цель расчета: проверить выполняемость условий прочности от внутреннего давления с полученной величиной стенки.

Независимо от вида оболочки: .

Для цилиндрических оболочек допускаемое давление рассчитывается:

Для сферы:     

Для конуса:  

Для эллиптических: .

Лекция №5.










Последнее изменение этой страницы: 2018-06-01; просмотров: 259.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...