Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Графический способ решения ЗЛП




Геометрическая интерпретация экономических задач дает возможность наглядно представить, их структуру, выявить особенности и открывает пути исследования более сложных свойств. ЗЛП с двумя переменными всегда можно решить графически. Однако уже в трехмерном пространстве такое решение усложняется, а в пространствах, размерность которых больше трех, графическое решение, вообще говоря, невозможно. Случай двух переменных не имеет особого практического значения, однако его рассмотрение проясняет свойства ОЗЛП, приводит к идее ее решения, делает геометрически наглядными способы решения и пути их практической реализации.
Пусть дана задача


(1.11)

(1.12)

(1.13)

Дадим геометрическую интерпретацию элементов этой задачи. Каждое из ограничений (1.12), (1.13) задает на плоскости  некоторую полуплоскость. Полуплоскость — выпуклое множество. Но пересечение любого числа выпуклых множеств является выпуклым множеством. Отсюда следует, что область допустимых решений задачи (1.11) — (1.13) есть выпуклое множество.
Перейдем к геометрической интерпретации целевой функции. Пусть область допустимых решений ЗЛП — непустое множество, например многоугольник .
 
Выберем произвольное значение целевой функции . Получим . Это уравнение прямой линии. В точках прямой целевая функция сохраняет одно и то же постоянное значение . Считая в равенстве (1.11) параметром, получим уравнение семейства параллельных прямых, называемых линиями уровня целевой функции (линиями постоянного значения).
Найдём частные производные целевой функции по и :


, (1.14)


. (1.15)


Частная производная (1.14) (так же как и (1.15)) функции показывает скорость ее возрастания вдоль данной оси. Следовательно, и — скорости возрастания соответственно вдоль осей и . Вектор называется градиентом функции. Он показывает направление наискорейшего возрастания целевой функции:


 


Вектор указывает направление наискорейшего убывания целевой функции. Его называют антиградиентом.
Вектор перпендикулярен к прямым семейства .
Из геометрической интерпретации элементов ЗЛП вытекает следующий порядок ее графического решения.
1. С учетом системы ограничений строим область допустимых решений Ω.
2. Строим вектор наискорейшего возрастания целевой функции — вектор градиентного направления.
3. Проводим произвольную линию уровня .
4. При решении задачи на максимум перемещаем линию уровня в направлении вектора так, чтобы она касалась области допустимых решений в ее крайнем положении (крайней точке). В случае решения задачи на минимум линию уровня перемещают в антиградиентном направлении.
5. Определяем оптимальный план и экстремальное значение целевой функции

.

 

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 236.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...