Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Номенклатура и классификация ферментов




В настоящее время известно более двух тысяч химических реакций, катализируемых ферментами, и число это непрерывно возрастает. Чтобы ориентироваться в таком множестве превращений, ещё в 1961 году Международной комиссией по ферментам (IEC) были разработаны принципы рациональной международной классификации и номенклатуры, при помощи которой любой фермент можно было бы точно идентифицировать.

В основу классификации положен важнейший признак, по которому один фермент отличается от другого – это катализируемая им реакция. Приведенная ниже классификация ферментов основана на рекомендациях Комитета по номенклатуре Международного Объединения Биохимии и Молекулярной Биологии (NC-IUBMB). Число типов химических реакций сравнительно невелико, что позволило разделить все известные в настоящее время ферменты на 6 важнейших классов.

В зависимости от типа катализируемой реакции выделяют следующие   классы ферментов:

 

1. Оксидоредуктазы (окислительно-восстановительные реакции);

2. Трансферазы (перенос функциональных групп);

3. Гидролазы (реакции расщепления с участием воды);

4. Лиазы (разрыв связей без участия воды);

5. Изомеразы (изомерные превращения);

6. Лигазы (синтез с затратой молекул АТФ).

 

Ферменты каждого класса делят на подклассы, руководствуясь строением субстратов. В подклассы объединяют ферменты, действующие на сходно построенные субстраты. Подклассы разбивают на подподклассы, в которых ещё строже уточняют структуру химических групп, отличающих субстраты друг от друга. Внутри подподклассов перечисляют индивидуальные ферменты. Все подразделения классификации имеют свои номера. Таким образом, любой фермент получает свой уникальный кодовый номер (шифр), со стоящими перед ним буквами КФ («Каталог ферментов», английская аббревиатура ЕС). Шифр каждого фермента содержит четыре числа, разделенных точками. Первое число обозначает класс, второе – подкласс, третье – подподкласс, четвёртое – номер фермента в пределах подподкласса.

Согласно классификации, каждый фермент имеет два названия: рекомендуемое (рабочее), предназначенное для повседневного употребления, и систематическое, которое составляется в определенном порядке и подчеркивает тип катализируемой реакции. Систематическое название составляется из двух частей. Первая часть содержит название субстрата или субстратов, часто – наименование кофермента, вторая часть указывает на природу катализируемой реакции и включает название класса, к которому относится данный фермент. При необходимости приводится дополнительная информация о реакции в скобках после второй части названия. Систематическое название присваивается только тем ферментам, каталитическое действие которых полностью изучено.

Пример: Систематическое название фермента АТР:D-гексозо-6-фосфотрансфераза (КФ 2.7.1.1) указывает на то, что этот энзим катализирует перенос фосфатной группы от АТР на гидроксильную группу атома углерода в шестом положении гексозы; фермент относится к классу 2 (трансферазы); подклассу 7 (перенос фосфатных групп); подподклассу 1 (акцептором фосфата являются спирты). Рекомендуемое (рабочее) название этого фермента – гексокиназа.

В ряде случаев сохранились тривиальные названия, присвоенные ферментам на ранних этапах их изучения, когда название фермента включало только субстрат, на который действует данный фермент и окончание «-аза». Так, ферменты, обеспечивающие гидролиз крахмала (амилон), были названы амилазами; ферменты, гидролизующие жиры (липос) – липазами; ферменты, гидролизующие белки (протеины) – протеазами. Также в употреблении сохранился ряд рабочих, исторически закрепленных названий ферментов, которые не дают представления ни о субстрате, ни о типе химического превращения, например: пепсин, трипсин, химотрипсин, тромбин и т.д.

Рассмотрим каждый из классов ферментов отдельно.

 

Класс 1: Оксидоредуктазы. Катализируют окислительно-восстановительные реакции, в которых, как правило, участвуют два субстрата, S и S¢. Общая схема реакций, катализируемых оксидоредуктазами, включающих субстраты S и S¢, может быть выражена следующим образом:

 

Sвосст + окислSокисл + восст

 

В окислительно-восстановительных реакциях происходит перенос двух восстановительных эквивалентов в той или иной форме (атомов водорода, электронов, гидрид-ионов и т.д.) от одного субстрата (окисляемого) к другому (восстанавливаемому). Субстрат, подвергающийся окислению, рассматривается как донор водорода (S), а субстрат, который восстанавливается – акцептором водорода (S¢). Систематическое название составляется по схеме: – донор: акцептор оксидоредуктаза. Согласно тривиальной номенклатуре, общее название оксидоредуктаз, отщепляющих атомы водорода или электроны и переносящих их на любой акцептор, кроме кислорода, представлено дегидрогеназами. Как альтернатива, некоторые ферменты, которые преимущественно характеризуются восстанавливающим действием, носят название редуктаз. Оксидоредуктазы, использующие кислород в качестве акцептора атомов водорода или электронов, называются оксидазами. Ферменты, осуществляющие перенос электронов, называются цитохромами.

Подклассы оксидоредуктаз формируются в зависимости от природы функциональной группы донора водорода (электронов). Деление на подподклассы зависит от акцептора электронов:

 

2 класс: Трансферазы. Ферменты этого класса катализируют перенос различных групп от молекулы донора к молекуле акцептору:

 

S-R + S′S′-R + S

 

Подразделение трансфераз на подклассы зависит от природы переносимых группировок:

 

3 класс: Гидролазы. Ферменты этого класса катализируют реакции расщепления связей в различных соединениях с участием воды:

 

А-В + H2OА-H + В-OH

 

Гидролазы делятся на подклассы в зависимости от природы гидролизуемой связи. Наиболее важные гидролазы принадлежат следующим подклассам.

 

4 класс: Лиазы. Ферменты данного класса катализируют негидролитическое расщепление субстрата с образованием кратной связи или цикла, а также обратные реакции – присоединение по кратным связям или реакции раскрытия цикла, не требующие гидролиза АТР:

 

АВА + В

 

Эти ферменты используют в качестве кофакторов тиаминпирофосфат (витамин В1) и пиридоксальфосфат (витамин В6).

Лиазы подразделяют на подклассы в зависимости от типа расщепляемой связи:

 

5 класс.Изомеразы. Изомеразы катализируют реакции изомеризации – геометрические или структурные изменения в пределах одной молекулы.

Деление на подклассы зависит от типа катализируемой реакции изомеризации:

 

6 класс. Лигазы. Лигазы катализируют образование органических соединений из активированных нуклеозидтрифосфатами (АТР, GTP, UTP, или CTP) исходных веществ. Для ферментов этого класса сохраняется также тривиальное название синтетазы. Общая схема реакции:

 

А + В + АТРАВ + АDP + Н3РО4

Разделение лигаз на подклассы связано с типом образуемой связи.

Коферменты

 

Подобно другим функциональным белкам, ферменты делятся на простые (однокомпонентные) и сложные (двухкомпонентные). Простые ферменты – это белки, построенные из аминокислот, и при гидролизе распадаются только на аминокислоты. К их числу относятся, например, гидролитические ферменты (пепсин, трипсин, уреаза). Сложные ферменты – это по сути сложные белки, содержащие, кроме, полипептидной цепи, небелковый компонент. При их гидролизе образуются не только свободные аминокислоты, но и небелковый фрагмент или продукты его распада.

Белковая часть сложного фермента получила название апофермента, небелковая часть – кофактора. Кофакторы могут иметь разную химическую природу и отличаться по прочности связи с апоферментом. Если кофактор прочно связан с апоферментом ковалентной связью, он называется простетической группой (FAD, FMN, биотин, пиридоксаль-5'-фосфат липоевая кислота). Простетическая группа обычно остаётся в составе фермента на всех стадиях каталитической реакции. Кофактор, который легко отделяется от апофермента и способен к самостоятельному существованию, называется коферментом. Апофермент удерживает кофермент нековалентными связями – водородными, электростатическими и др. Обычно кофермент связывается с апоферментом только во время катализа, после окончания реакции он покидает активный центр. Такими легко диссоциирующими коферментами являются коферменты-переносчики, действие которых связано с переходом от одной молекулы фермента к другой. Некоторые коферменты, например NAD, в зависимости от каталитических реакций, в которых они участвуют, могут функционировать как простетическая группа или покидать активный центр фермента.

Кофермент вместе с апоферментом образуют холофермент:

 

Кофермент + Апофермент ↔ Холофермент

Следует отметить одну отличительную особенность сложных ферментов, заключающуюся в том, что ни кофактор (в том числе кофермент), ни сам по себе апофермент каталитической активностью не обладают и только их объединение в единое целое обеспечивает быстрое протекание химической реакции.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 243.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...