![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Однокритериальная статическая задача разработки управленческого решения в условиях определенности
Альтернативы в задачах экономики и менеджмента сводится к различным вариантам использования ресурсов. К числу таких ресурсов можно отнести материальные, финансовые, людские и время. Время относится к особой категории ресурсов, расходом которых управлять невозможно. Однокритериальная статическая задача управленческого решения в условиях определенности – это задача с набором из
Решение такой задачи – это одна из альтернатив Очевидно, что случайные решения мало кого устраивают. При разработке рациональных решений перед принятием решения (выбором альтернативы) нам необходимо провести работу по разработке набора альтернатив, удовлетворяющих ограничениям задачи. В зависимости от конкретной задачи для выполнения такой работы нам может потребоваться достаточно много усилий, например, разработать несколько альтернативных проектов. Очень часто так и приходится поступать. В то же время, в нашем случае основной интерес представляет процесс выбора, а не разработки альтернативы. Поэтому для лучшего понимания метода нам было бы удобно генерировать альтернативы автоматически, что позволяют оптимальные методы. В принципе, мы можем воспользоваться любым известным нам оптимальным методом поиска экстремума функции. Поэтому для определенности для изучения способов решения однокритериальной статической задачи управленческого решения воспользуемся методами математического программирования.
Рис. 16. Математическая классификация задач принятия решения Задача Л.В. Канторовича (1, 2), рассматриваемая применительно к экономике и менеджменту, получила название производственной задачи или задачи распределения ресурсов. Действительно, если уравнение (1) описывает доход или прибыль от производственной деятельности, а выражения (2) описывают расход имеющихся принятых во внимание ресурсов, которые необходимы для осуществления производственной деятельности, то решение этой задачи позволяет получить оптимальную по критерию дохода или прибыли программу выпуска продукции Примечание. В задаче, решенной в процессе выполнения лабораторной работы номер 1, исходные данные были сформированы от датчика случайных чисел. Полученное решение математически является оптимальным, но оно никак не может быть интерпретировано по отношению к какой либо практической задаче. Если выбрать практическую задачу, решаемую методом линейного или математического программирования, и задать значения неконтролируемых параметров на основе реальных данных, то полученное решение имеет практический смысл. Существует еще несколько вариантов постановки задачи, решаемой методами математического программирования. Задача о назначениях имеет следующий смысл. Пусть имеется
Очевидно, что один кандидат может быть назначен только на одну должность. Это обстоятельство может быть формализовано в виде ограничений
Поскольку кандидат может быть или назначен, или не назначен на соответствующую должность, имеет место еще одно ограничение Транспортная задача оптимизирует перевозки между несколькими пунктами отправки и получения груза. Пусть существует
Если предположить, что все грузы должны быть перевезены, то ограничения задачи имеют вид . Решением задачи является матрица размерностью Задача составления смесей внешне похожа на задачу распределения ресурсов. Смысл задачи – минимизировать затраты на изготовление смеси различных веществ, например, при изготовлении бетона, так, чтобы при этом гарантировать наличие в смеси определенных составляющих, например, цемента, в заданном количестве. Тогда выражение для целевой функции имеет вид
Выражения для ограничений приобретают вид Здесь первое неравенство задает общий объем смеси, а выполнение остальных гарантирует наличие в ней принципиально необходимых компонентов в заданном количестве. Задача о ранце предусматривает выбор из имеющегося набора предметов. Предположим, что имеется
при этом общий объем предметов не должен превысить некоторой величины предельного объема
Решение задачи позволяет оптимальным способом приблизить отобранный набор к заданному объему обеспечивая максимальную ценность выборки. Отметим, что если количество предметов какого-то вида ограничено, то это обстоятельство можно учесть, добавив в задачу ограничение вида |
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 365. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |