![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Учет ограничений на значения переменных
Существенный вклад в математическую теорию экстремальных задач был внесен Л.В. Канторовичем, впервые сформулировавшим и решившим задачу, позднее получившую название задачи линейного программирования. Математическая постановка этой задачи сводится к поиску переменных, входящих в выражение линейной критериальной функции и, в общем случае, в неограниченное конечное количество дополнительных функций ограничений (тоже линейных), которые в частности могут представлять собой неравенства. Дальнейшее развитие идей Л.В. Канторовича привело к появлению теории математического программирования, расширившей класс используемых функций. Так в некоторых случаях удается решать задачи с нелинейными критериальными функциями (задачи квадратичного программирования, геометрического программирования и т. п.). Отметим, что термин программирование в данном случае используется только как название математического метода и непосредственного отношения к программированию на ЭВМ не имеет. Рассмотрим простейшую задачу математического программирования, у которой имеется линейная целевая функция и линейные ограничения. Такая задача называется задачей линейного программирования. Будем считать, что у этой задачи имеется
Если по смыслу задачи целевая функция должна обращаться в минимум, то для получения выражения (1) в ней достаточно поменять значения всех коэффициентов Набор ограничений может быть записан в виде:
Тогда исходными данными (параметрами задачи) являются наборы коэффициентов
Оптимальное решение рассматриваемой задачи линейного программирования Задача линейного программирования при то может быть найдено ее плоскостное решение (рис. 4). Здесь ребра четырехугольника Распространенным методом решения задачи линейного программирования является так называемый симплекс – метод. В его основе лежит так называемая симплекс-таблица, которая составляется по определенным правилам исходя из исходных данных задачи (1, 2). Доказано, что, производя последовательные преобразования этой таблицы по определенным правилам, можно получить оптимальное решение задачи линейного программирования [1]. В основе методов решения нелинейных задач с ограничениями лежит так называемый метод Лагранжа. Наличие ограничения сужает возможности отыскания экстремума. В этом случае, как правило, экстремум функции Рис. 4. Графическая интерпретация метода линейного программирования В отличие от обычной функции Набор множителей Лагранжа При решении таких задач приходится выполнять итеративную процедуру отыскания экстремума, задавая область допустимых значений переменных Определив направление возрастания (убывания) целевой функции, построив, например, линии уровня для разных значений |
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 503. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |