Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Параметрическая оценка функции плотности распределения
Исходя из гипотезы, что заданная выборка имеет нормальный закон распределения, найдём параметрическую оценку функции плотности, используя формулу для плотности распределения вероятности нормального закона , (1.25) где и известны – они вычисляются по выборке. Значения этой функции вычисляют для середин частичных интервалов вариационного ряда, т.е. при . На практике для упрощения вычислений функции , где i=1,2,…,k, пользуются таблицами значений функции плотности стандартной нормальной величины (Приложение В).
Для этого вычисляем значения для i=1,2,…,k: (1.26) Затем по таблице находим значение : (1.27) И после вычисляем функцию : (1.28) Функция φ(х) принимает наибольшее значение при x = X : (1.29) Если h мало и объём выборки n велик, то можно приближенно, достаточно близко определить вероятность того, что случайная величина Х принадлежит интервалу [xi-1;xi), по формуле: P , (1.30) где – теоретическая вероятность. Используем соотношение, связывающее теоретическую вероятность c теоретической частотой : (1.31) Тогда теоретические частоты определяются равенствами (1.32) Может оказаться, что теоретические частоты являются дробными числами, но число элементов выборки, попадающих в i-й интервал, всегда является целым числом. Поэтому округлим дробные теоретические частоты до целых значений с условием, чтобы сумма всех найденных теоретических частот была близка к n: Если сумма теоретических вероятностей существенно ниже единицы, то надо построить дополнительные интервалы слева и справа от основного интервала [x0; xk). Для средних значений частичных интервалов, построенных слева и справа от интервала [x0; xk), вычислим значения теоретической плотности нормального распределения и теоретические частоты. Сумма для всех теоретических вероятностей должна быть близка к единице с точностью до нескольких знаков после запятой:
Вычислим теоретические вероятности: Вычислим теоретические частоты: Результаты вычислений вероятностей и соответствующих частот приведены в таблице 1.4. В первом столбце таблицы расположены k частичных интервалов, во втором столбце расположены наблюдаемые частоты ni , в третьем столбце расположены координаты середины частичных интервалов, в четвёртом столбце расположены относительные частоты, в пятом столбце расположены значения экспериментальной функции плотности, в шестом столбце расположены значения zi , в седьмом столбце расположены значения теоретической функции плотности, вычисленные в середине частичных интервалов, в восьмом столбце расположены значения теоретических вероятностей, в девятом столбце расположены значения теоретических частот. Таблица 1.4 - Результаты вычисления экспериментальных и теоретических вероятностей и частот
Построим графики экспериментальной и теоретической плотности нормального распределения (рис. 1)
Рис.1.Теоретическая и экспериментальная функции плотности вероятностей
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2018-04-12; просмотров: 233. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |