Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Степень окисления элементов соедиенения




Для характеристики состояния элементов в соединениях существует понятие степени окисления. Под с.о. понимают мнимый заряд атома в соединении который вычисляется исходя из предположения что соединение состоит из ионов.

 

Окисление

 

- процесс отдачи электронов, с увеличением степени окисления.

При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель:окислитель + e ↔ сопряжённый восстановитель.

Восстановление

При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углеродаВосстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель:восстановитель — e ↔ сопряжённый окислитель.

Окисли́тельно-восстанови́тельные реа́кции— это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.

Важнейшие окислитили востонавители

 

Восстановители Окислители
Металлы, Водород, Уголь, (CO), (H2S),(SO2), H2SO3 и ее соли,Галогеноводородные кислоты и их соли,Катионы металлов в низших степенях окисления: SnCl2, FeCl2, MnSO4, Cr2(SO4)3, HNO2, NH3, NH2NH2, (NO),Катод при электролизе. Галогены, KMnO4) , (K2MnO4),(MnO2), (K2Cr2O7),(K2CrO4) ,(HNO3) ,(H2SO4),(CuO),(PbO2),(Ag2O),(H2O2),(FeCl3), (KClO3),Анод при электролизе.

 

Метод электронного баланса

— на основании степеней окисления расставить коэффициенты в ОВР.Для правильного уравнивания следует придерживаться определённой последовательности действий:

1. Найти окислитель и восстановитель.

2. Составить для них схемы (полуреакции) переходов электронов, отвечающие данному окислительно-восстановительному процессу.

3. Уравнять число отданных и принятых электронов в полуреакциях.

4. Просуммировать порознь левые и правые части полуреакций.

5. Расставить коэффициенты в уравнении окислительно восстановительной реакции.

8.5 Электро́дный потенциа́л

— разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом .Возникновение электродного потенциала обусловлено переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул— ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.

РЯД НАПРЯЖЕНИЯ МЕТАЛЛОВ

Металлы можно расположить в ряд, который начинается с химически активных и заканчивается наименее активными благородными металлами:
Li, Rb, К, Ва, Sr, Са, Mg, Al, Be, Mn, Zn, Cr, Ga, Fe, Cd, Tl, Co, Ni, Sn, Pb, H, Sb, Bi, As, Cu, Hg, Ag, Pd, Pt, Au.

 

 


Классификация комплексных соединений

По заряду комплекса

1) Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул H2O.[(Zn(NH3)4)]Cl2 — хлорид тетраамминцинка(II)
2) Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы.K2[BeF4] — тетрафторобериллат(II) калия
3) Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а также при одновременной координации вокруг положительного иона — комплексообразователя отрицательных ионов и молекул.[Ni(CO)4] — тетракарбонилникель

 



Номенклатура

1)сначало назыв анион потом катион.  2) Cl — хлоро, CN — циано, SCN — тиоцианато, NO3 — нитрато, SO32− — сульфито, OH — гидроксо и т. д. При этом пользуются терминами: для координированного аммиака — аммин, для воды — аква, для оксида углерода(II) — карбонил.

3) 3 пента 5 тетра 6 гекса4) окончание -ат, 5) После обозначения состава внутренней сферы называют внешнюю сферу.

K3[Fe(CN)6] — гексацианоферрат(III) калия(NH4)2[PtCl4(OH)2] — дигидроксотетрахлороплатинат(IV) аммония;[Сr(H2O)3F3] — трифторотриаквахром;[Сo(NH3)3Cl(NO2)2] — динитритохлоротриамминкобальт;[Pt(NH3)4Cl2]Cl2 — хлорид дихлоротетраамминплатины(IV);[Li(H2O)4]NO3 — нитрат тетрааквалития.

Изомерия

Способность атомов углерода к образованию четырех ковалентных связей, в том числе и с другими атомами углерода, открывает возможность существования нескольких соединений одного элементного состава — изомеров.Все изомеры делят на два больших класса — структурные изомеры и пространственные изомеры.Структурными называют изомеры, отвечающие различным структурным формулам органических.Пространственные изомеры имеют одинаковые заместители у каждого атома углерода и отличаются лишь их взаимным расположением в пространстве.

Равновесие в растворах комплексных соединений

 комплексные соединения в растворах подвержены в значительной степени первичной электролитической диссоциации. K2[PtCl4] ^z± 2K+ + [PtCl4]-

Для комплексных ионов характерно наличие в растворах сольвата-ционных равновесий следующего типа:[PtCl4]""*"+ H2O 5=± [PtCl3(H2O)]"+ СГ [PtCl3(H2O)]"+ H2O +± [PtCI2(H2O)2] + Cl-

В результате подобных сольватационных процессов, вызываемых обменными реакциями комплексных ионов с молекулами растворителя, возникают гидратированные ионы соответствующих элементов и в растворе появляются «вымытые» из комплекса ионы или молекулы.

В неводных растворителях роль молекул воды играют молекулы соответствующего растворителя.

Сольватационное равновесие комплекса вызывает в ряде случаев равновесие кислотно-основного-типа. Например:

[PtCl3(H2O)]*" [PtCl3OH]"" + H+ [PtCl2(H2O)2] 5Z± [PtCl2(H2O)OH]"+ H+

it

[PtCi2(OH)2]""+ H+

и т. д.

Подобно ступенчатой диссоциации электролитов, первые ступени сольватационного равновесия и отвечающего ему кислотно-основного равновесия более резко выражены^ чем последующие.

В противоположность ионным и кислотно-основным равновесиям, устанавливающимся практически моментально, сольватацнонные равновесия устанавливаются со временем.

Комплексные ионы 6 растворах подвергаются также, но в меньшей степени, вторичной электролитической диссоциации. Вторичную электролитическую диссоциацию комплексов обычно, ради простоты, рассматривают вне связи с сольватационными процессами и изображают в виде общепринятых простых уравнений электролитической диссоциации. Например, [PtCJ4]-"" ионы способна диссоциировать с образованием простых ионов:

[PtCI4] ZiZ± Pt++ + 4Cr

Таким образом, вторичная электролитическая диссоциация комплексных ионов рассматривается как обратимый процесс.

 

По образцу)

10.1

Простые вещества — это вещества, образованные из атомов одного элемента.

Простое вещество характеризуется определенной плотностью, растворимостью, температурой кипения и плавления и т.п. Эти свойства относятся к совокупности атомов, и для разных простых веществ они различны. Химический элемент характеризуется определенным положительным зарядом ядра атома (порядковым номером), степенью окисления, изотопным составом и т.д. Свойства элементов относятся к его отдельным атомам.

Многие химические элементы образуют несколько простых веществ, различных по строению и свойствам. Это явление называется аллотропией, а образующиеся вещества — аллотропными видоизменениями или модификациями. Так, элемент кислород образует две аллотропные модификации — кислород и озон; элемент углерод — три: алмаз, графит и карбин; несколько модификаций образует элемент фосфор.
Явление аллотропии вызывается двумя причинами:
1) различным числом атомов в молекуле (например, кислород O2 и озон О3) или
2) образованием различных кристаллических форм (например, алмаз, графит и карбин, см. §7.2).
Простые вещества делят на металлы и неметаллы. Неметаллов известно всего 22. Это водород, гелий, бор, углерод, азот, кислород, фтор, неон, кремний, фосфор, сера, хлор, аргон, мышьяк, селен, бром, криптон, теллур, йод, ксенон, астат, радон.

Основные классы неорганических веществ. Соответственно делению элементов классифицируют простые вещества, одноэлементные по составу и представляющие собой формы нахождения элементов в свободном виде. Все двух- и многоэлементные вещества называют сложными веществами, а многоатомные простые вещества и все сложные вещества вместе – химическими соединениями (в них атомы одного или разных элементов соединены между собой химическими связями).

Классификация сложных веществ первых трёх классов по составу основана на обязательном наличии в них самого распространённого в природе элемента – кислорода, и на самом распространённом соединении кислорода – воде.

Первый класс сложных веществ – это оксиды, соединения катионов элементов (реальных или формальных) с кислородом (-II); их общая формула ЭхОу. К оксидам не относятся соединения кислорода с фтором (простейшее из них О-IIF2-I), а также пероксиды и надпероксиды (Na2O2 , KO2), включающие анионы из химически связанных атомов кислорода О22- и О2-.

Второй класс сложных веществ – гидроксиды, получающиеся при соединении оксидов с водой (чаще формально, реже реально). По химическим свойствам различают кислотные (НхЭОу), основные и амфотерные [M(OH)n] гидроксиды, соответствующие кислотным, основным и амфотерным оксидам.

Третий класс сложных веществ – соли, продукты взаимодействия (реального и формального) гидроксидов. Разные типы гидроксидов реагируют между собой и образуют кислородсодержащие соли, имеющие общую формулу Мх(ЭОу)n и состоящих из катионов Мn+ и анионов (кислотных остатков) ЭОух-. Такие соли называют средними солями, а если они содержат два химически разных катиона – двойными. При наличии водорода в составе кислотного остатка соли называются кислыми, а при наличии гидроксогрупп ОН (иногда и ионов О2–) – основными солями.

Четвёртый класс сложных веществ – бинарные соединения, их существование и образование логически не вытекает из цепочки первых трёх классов (оксиды – гидроксиды – соли). Классификация бинарных соединений не связана с наличием в них кислорода (–II) и не основана на соединении такого кислорода – воде. Фактически это обширный класс сложных неорганических веществ, не относящихся к оксидам, гидроксидам и солям и имеющих разнообразные химические свойства.

 

Номенклатура

Азотная HNO3 Нитраты
Азотистая HNO2 Нитриты
Алюминиевая H3AlO3 Алюминаты
Борная (ортоборная) Н3ВО3 Бораты (ортобораты)
Бромоводород НВr Бромиды
Иодоводород HI Иодиды
Кремниевая H2SiО3 Силикаты
Марганцовая HMnO4 Перманганаты
Метафосфорная НРО3 Метафосфаты
Мышьяковая H3AsO4 Арсенаты
Мышьяковистая H3AsO3 Арсениты
Ортофосфорная Н3РО4 Ортофосфаты (фосфаты)
Двуфосфорная (пирофосфорная) H4P2O7 Дифосфаты (пирофосфаты) фаты)
Серная H2SO4 Сульфаты
Сернистая H2SO3 Сульфиты
Угольная Н2СО3 Карбонаты
Фосфористая H3PO4 Фосфиты
Фтороводород (плавиковая кислота) HF Фториды
Хлороводород (соляная кислота) HCl Хлориды
Хлорная HСlO4 Перхлораты
Хлорноватая HСlO3 Хлораты
Хлористая НClO2 Хлориты
Хлорноватистая HClO Гипохлориты
Хромовая H2CrO4 Хроматы
Циановодородная (синильная кислота) слота) HCN Цианиды

 

 


Основные типы химических реакций

Среди разнообразных химических реакций можно выделить два типа, существенно отличающихся друг от друга. К первому типу реакций относятся те, в ходе которых степень окисления элементов, входящих в соединение, не изменяется. Образование новых молекул в таких реакциях происходит лишь в результате перегруппировки атомов или ионов.

а) Реакции обмена типа AB + ДC = AД + BC (чаще в растворе)

(например, BaCl2+K2SO4=BaSO4 +2KCl);

б) некоторые реакции соединения (CaO+H2O=Ca(OH)2);

в) некоторые реакции разложения (CaCO3=CaO+CO2).

Легко установить, что в ходе указанных реакций степень окисления элементов не изменяется.

Сюда же относятся реакции нейтрализации кислот с основаниями:

H2SO4 + Ca(OH)2 = CaSO4 + 2H2O;

2H2SO4 + Ca(OH)2 = Ca(HSO4)2 + 2H2O.

Гидролиз солей: CuSO4 + 2H2O = Cu(OH)2 + H2SO4.

Реакции, протекающие с изменением степеней окисления элементов, называются окислительно-восстановительными.

Реакции, протекающие с выделением энергии (в виде тепла) называются экзотермическими, а реакции, при которых энергия (тепло) поглощается - эндотермическими.

Реакции, протекающие в гомогенной системе, называются гомогенными, в гетерогенной системе - гетерогенными.

Системой принято называть рассматриваемое вещество или совокупность веществ. Гомогенной называется система, состоящая из одной фазы, гетерогенной - система, состоящая из нескольких фаз. (Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком).

Гомогенная система: NaOH + H2SO4=NaHSO4 + H2O (во всем объеме)

Гетерогенная реакция: Fe + 2HCl = FeCl2 + H2 (на поверхности металла).

Степень окисления и валентность

Ранее было показано, что при образовании ковалентной связи электронные пары располагаются симметрично относительно ядер взаимодействующих атомов и атомы в молекулах никаких зарядов не несут.

При образовании ионных связей валентные электроны переходят от менее электроотрицательных (ЭО) к более электроотрицательным атомам, в результате чего образуются ионы, заряд которых определяется количеством отданных или присоединенных электронов. В молекулах с полярными связями валентные электроны лишь частично смещаются к более ЭО атому, при этом на взаимодействующих атомах возникают электрические заряды, но их величины не являются целочисленными. Например, в молекуле HCl на водороде существует положительный, а на Cl - отрицательный заряды, но их величины меньше 1.

В практических целях (при составлении уравнений окислительно-восстановительных реакций) заряды на атомах в молекулах с полярными связями удобно представлять в виде целых чисел, равных таким зарядам, которые возникли бы на атомах, если бы валентные электроны полностью переходили к более электроотрицательным атомам, т.е. если бы связи были полностью ионными. Такие величины зарядов получили название степеней окисления. Степень окисления любого элемента в простом веществе всегда равна 0.

В молекулах сложных веществ некоторые элементы всегда имеют постоянную степень окисления. Для большинства элементов характерны переменные степени окисления, различающиеся как знаком, так и величиной, в зависимости от состава молекулы.

У щелочных металлов, а также у металлов главной подгруппы второй группы степень окисления во всех соединениях равна соответственно +1 и +2. Постоянную степень окисления, равную -1, имеет фтор. Кислород, как правило, имеет степень окисления -2. У водорода в соединениях с неметаллами степень окисления +1, в гидридах металлов - -1. Для того, чтобы отличить значения степени окисления от зарядов ионов в первом случае знак ставится перед цифрой, во втором - после цифры. Например, Н+1Cl-1, но Na1+Cl1-.

Часто степень окисления (СО) равна валентности и отличается от нее только знаком. Но встречаются соединения, в которых степень окисления элемента не равна его валентности. Как уже отмечалось, в простых веществах СО элемента всегда равна нулю независимо от его валентности. В таблице сопоставлены валентности и степени окисления некоторых элементов в различных соединениях.

 

ХИМИЯ в биологии, медицине и производстве лекарственных препаратов. Современное человеческое общество живет и продолжает развиваться,

активно используя достижения науки и техники, и практически немыслимо остановиться на этом пути или вернуться назад, отказавшись от использования знаний об окружающем мире, которыми человечество уже обладает. Накоплением этих знаний, поиском закономерностей в них и их применением на практике занимается наука. Человеку как объекту познания свойственно разделять и классифицировать предмет своего познания (вероятно, для простоты исследования) на множество категорий и групп; так и наука в свое время была поделена на несколько больших классов: естественные науки, точные науки,

общественные науки, науки о человеке и пр. Каждый из этих классов делится,в свою очередь, на подклассы и т.д. и т.п. Но среди этого многообразия наук есть науки "лидеры" и науки "отстающие". Одними из современных наук "лидеров" и являются биология и медицина.

 






10.2

Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. Расположение их в главных подгруппах соответствующих периодов следующее:

Группа III IV V VI VII VIII
2-й период B C N O F Ne
3-й период   Si P S Cl Ar
4-й период     As Se Br Kr
5-й период       Te I Xe
6-й период         At Rn

Кроме того, к неметаллам относят также водород[источник не указан 32 дня] и гелий.

Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов, и проявлению более высокой окислительной активности, чем у металлов.

Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал.

Благодаря высоким значениям энергии ионизации неметаллов, их атомы могут образовывать ковалентные химические связи с атомами других неметаллов и амфотерных элементов. В отличие от преимущественно ионной природы строения соединений типичных металлов, простые неметаллические вещества, а также соединения неметаллов имеют ковалентную природу строения.

В свободном виде могут быть газообразные неметаллические простые вещества — фтор, хлор, кислород, азот, водород, инертные газы, твёрдые — иод, астат, сера, селен, теллур, фосфор, мышьяк, углерод, кремний, бор, при комнатной температуре в жидком состоянии существует бром.

У некоторых неметаллов наблюдается проявление аллотропии. Так, для газообразного кислорода характерны две аллотропных модификации — кислород (O2) и озон (O3), у твёрдого углерода множество форм — алмаз, астралены, графен, графан, графит, карбин, лонсдейлит, фуллерены, стеклоуглерод, диуглерод, углеродные наноструктуры (нанопена, наноконусы, нанотрубки, нановолокна) и аморфный углерод уже открыты, а ещё возможны и другие модификации, например, чаоит и металлический углерод.

В молекулярной форме в виде простых веществ в природе встречаются азот, кислород и сера. Чаще неметаллы находятся в химически связанном виде: это вода, минералы, горные породы, различные силикаты, фосфаты, бораты. По распространённости в земной коре неметаллы существенно различаются. Наиболее распространёнными являются кислород, кремний, водород; наиболее редкими — мышьяк, селен, иод.

В подгруппу галогенов входят элементы фтор (9F), хлор (17Cl),

Бром (35Вг). йод (53I), а также элемент астатий (85At), не имеющий стабильных изотопов. Иногда в число элементов подгруппы галогенов..включают также водород 1Н, однако свойства его существенно отличаются от свойств элементом VII группы, и поэтому химию водорода целесообразно рассматривать отдельно (см. с. ),

Хотя фтор (по Менделееву) является «типическим» элементом в подгруппе галогенов, его свойства не в полной мере характеризуют свойства всех элементов подгруппы, так как, согласно закону Менделеева, в группах и подгруппах периодической системы происходит закономерное изменение свойств элементов. Для элементов подгруппы галогенов свойственно существенное изменение свойств образуемых ими соединений. В ряду F—I (At) происходит переход от ярко выраженных неметаллических свойств наиболее активного неметалла (фтора) к металлическим свойствам, которыми, по-видимому, должен обладать самый тяжелый элемент подгруппы (астатий). Ряд свойств, характерных для элементов-металлов, проявляет в некоторых своих производных и йод.

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 285.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...