Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ




ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ

 

Задача 47.В отделении 10 стрелков, из них 3 отличных, 5 хороших и 2 посредственных. Известно, что вероятность попадания в цель отличным стрелком - 0,9, хорошим - 0,8, и стреляющим удовлетворительно - 0,6. Из строя наугад вызывается один стрелок для производства выстрела по цели. Какова вероятность попадания в цель этим стрелком?

Решение. Вероятность события А, которое может наступить лишь при условии появления одного из несовместных событий H1, H2, …, Hn, образующих полную группу (гипотез), в соответствии с формулой полной вероятности, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А, т.е.        P(A)=P(H1)P(A/H1)+P(H2)P(A/H2)+…+P(Hn)P(A/Hn)= .

Пусть событие А – стрелок попал в цель. Гипотезы: H1 – стрелок отличный; H2 – стрелок хороший; H3 – стрелок посредственный. Вероятности этих гипотез следующие: ;      ;       .

Условные вероятности поражения цели по этим гипотезам даны:

P(A/H1)=0,9; P(A/H2)=0,8; P(A/H3)=0,6

Тогда, согласно формуле полной вероятности, искомая вероятность попадания в цель будет равна

P(A)=0,3×0,9+0,5×0,8+0,2×0,6=0,79.

 

Задача 48.В условиях предыдущей задачи 47 будем считать, что вызванный наугад стрелок произвел выстрел и попал в цель. Требуется определить вероятности, характеризующие его принадлежность к различным категориям стрелков.

Решение. В соответствии с формулами Байеса, вероятность гипотезы после испытания равна произведению вероятности гипотезы до испытания на условную вероятность события по этой гипотезе, деленному на полную вероятность события:

В нашей задаче событие А – стрелок попал в цель; гипотезы Н1 – стрелял отличный стрелок; Н2 – стрелял хороший стрелок; Н3 – стрелял посредственный стрелок.

Априорные[1] (доопытные) вероятности гипотез нам известны: Р(Н1)=0,3; Р(Н2)=0,5; Р(Н3)=0,2. Условные вероятности попадания в цель по этим гипотезам даны: Р(А/Н1)=0,9; Р(А/Н2)=0,8; Р(А/Н3)=0,6. Полная вероятность попадания в цель Р(А)=0,79.

Тогда апостериорные[2] (послеопытные) вероятности гипотез будут равны

;

;       

Заметим, что сумма вероятностей гипотез после испытания всегда равна единице. Для нашего примера    .

 

Задача 49. Всхожесть семян данного растения составляет 90 %. Найти вероятность того, что из пяти посеянных семян взойдут: а) четыре; б) не менее четырех.

Решение.Воспользуемся формулой Бернулли. Если производится п независимых испытаний, при каждом из которых вероятность осуществления событий А постоянна и равна р, а вероятность противоположного события  равна q=1-p, то вероятность Рп(т) того, что при этом событие А осуществляется ровно т раз, вычисляется по формуле

                                             (1)

где  есть число сочетаний из п элементов по т.

а) По условию задачи вероятность всхожести семян р=0,9; тогда q=0,1; в данном случае п=5 и т=4. Подставляя эти данные в формулу Бернулли (1), получим

б) Искомое событие А состоит в том, что из пяти посеянных семян взойдут или четыре, или пять. Таким образом, Р(А)=Р5(4)+Р5(5). Первое слагаемое уже найдено. Для вычисления второго снова применяем формулу (1):

Следовательно, Р(А)=0,328+0,591=0,919.

 

Задача 50. Вероятность появления события А в каждом из 625 испытаний равна 0,64. Найти вероятность того, что событие А в этих испытаниях появиться ровно 415 раз.

Решение. Если число испытаний п велико, то применение формулы Бернулли приводит к громоздким вычислениям. Использование этой формулы становиться практически невозможным. В таких случаях применяют приближенную формулу, которая выражает суть локальной теоремы Лапласа.

Если вероятность наступления события А в каждом из п независимых испытаний постоянна и равна р (р отлично от нуля и единицы), а число п достаточно велико, то вероятность Рп(т) того, что в этих испытаниях событие А наступит т раз (безразлично, в какой последовательности) вычисляется приближенно по формуле

                                                (2)

где

Имеются готовые таблицы значений функции j(х) (см. табл. 1 Приложения).

Для х>5 считают, что j(х)»0. Так как функция j(х) четная, то j(-х)=j(х). По условию задачи п=625, т=415, р=0,64. Находим q=1-0,64=036. Определяем значение х при этих данных:

По табл. 1 находим, что j(1,25)=0,1826. Подставив это значение в (2), получим

 

Задача 51. Среди семян ржи 0,04 % сорняков. Какова вероятность при случайном отборе 5000 семян обнаружить 5 семян сорняков?

Решение.Применение асимптотической формулы (2) для случая, когда вероятность р близка к нулю, приводит к значительному отклонению от точного значения Рп(т). При малых значениях р (и при малых значениях q) применяют асимптотическую формулу Пуассона.

Если вероятность появления события А в каждом из п независимых испытаний мала, а число испытаний п достаточно велико, то вероятность того, что событие А наступит т раз, вычисляется приближенно по формуле

                                                   (3)

где l=пр.

Формулу (3) применяют в тех случаях, когда l£10. При этом чем больше число п и меньше число р, тем точнее результат по этой формуле. По условию задачи п=5000, т=5, р=0,0004. Тогда l=5000.0,0004=2. Применяя (3), получим

 

Задача 52.Вероятность попадания в цель при отдельном выстреле равна 0,6. Найти вероятность того, что число попаданий при 600 выстрелах будет заключено в пределах от 330 до 375.

Решение. Формулы Бернулли, Пуассона, асимптотическая формула (2), выражающая суть локальной теоремы Лапласа, позволяют найти вероятность появления события А ровно т раз при п независимых испытаниях. На практике часто требуется определить вероятность того, что событие А наступит не менее т1 раз и не более т2 раз, т.е. число т определено неравенствами т1£т£т2. В таких случаях применяют интегральную теорему Лапласа.

Если вероятность наступления события А в каждом из п независимых испытаний постоянна и равна р (р отлична от нуля и единицы), а число п достаточно велико, то вероятность того, что событие А в таких испытаниях наступит не менее т1 раз и не более т2 раз, вычисляется приближенно по формуле

                                         (4)

где

Имеются таблицы значений функции  (см. табл. 2 Приложения). Ф(х) называется функцией Лапласа. Эта функция является нечетной, т.е. Ф(-х)=-Ф(х). Поэтому таблица значений дается только для положительных чисел. Функция Ф(х) является монотонно возрастающей. При неограниченном возрастании х функция Ф(х) стремиться к 0,5. Если воспользоваться готовыми значениями функции Лапласа, то формулу (4) можно записать так:

                                          (5)

По условию п=600, р=0,6, т1=330, т2=375. Находим a и b:

По таблице 2 находим Ф(1,25)=0,3944; Ф(-2,5)=-Ф(2,5)=-0,4938. Подставив эти значения в (5), получим искомую вероятность:

 

Задача 53.Случайная величина Х распределена по нормальному закону. Математическое ожидание М(Х)=5; дисперсия D(X)=0,64. Найти вероятность того, что в результате испытания Х примет значение в интервале (4,7).

Решение. Если случайная величина Х задана дифференциальной функцией f(x), то вероятность того, что Х примет значение, принадлежащее интервалу (a,b), вычисляется по формуле

Если величина Х распределена по нормальному закону, то

                            (6)

где а=М(Х) и . По условию s=5, , a=4 и b=7. Подставив эти данные в (6), получим

 

Задача 54. Считается, что отклонение длины изготавливаемых деталей от стандарта является случайной величиной, распределенной по нормальному закону. Стандартная длина (математическое ожидание) a=40 см, среднее квадратическое отклонение s=0,4 см. Найти вероятность того, что отклонение длины от стандартной составит по абсолютной величине не более 0,6 см.

Решение. Если Х – длина детали, то по условию задачи эта величина должна быть в интервале (а-d, а+d), где а=40 и d=0,6. Подставив в формулу (6) a=а-d и b=а+d, получим

Таким образом,      

                                       (7)

Подставляя в (7) имеющиеся данные, получим 

Итак, вероятность того, что изготовление детали по длине будут в пределах от 39,4 до 40,6 см, составляет 0,8664.

 

 










Последнее изменение этой страницы: 2018-04-12; просмотров: 237.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...