Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция  | 
    
	
 Принцип тождественности частиц. Симметричные и антисимметричные волновые функции. Бозоны и фермионы, принцип Паули.Будем называть одинаковыми частицы, имеющие одинаковые массы, заряды, спины и т.д. Такие частицы в равных условиях ведут себя одинаковым образом, теряют свою индивидуальность. Поэтому выполняется принцип тождественности частиц: состояния системы частиц, получающиеся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте и такие состояния следует рассматривать как одно и то же физическое состояние. Рассмотрим систему из N невзаимодействующих частиц, обладающих спином. Волновая функция такой системы имеет вид                               С другой стороны, по определению оператора:                             Подействуем на  с учетом (2), получим:                            Как следует из (3) и (4), должно выполняться равенство:                      Опр. Функции, сохраняющие свое значение при перестановке аргументов, называются симметричными:  В релятивистской квантовой механике доказывается, что частицы с целым спином должны иметь симметричные волновые функции, а частицы с полуцелым спином – антисимметричные. Электроны имеют полуцелый спин, поэтому описываются антисимметричными волновыми функциями. Частицы с целым спином называются бозонами, с полуцелым – фермионами. Примером бозона является фотон, примерами фермионов – электроны, протоны, нейтроны. Рассмотрим систему из двух невзаимодействующих тождественных фермионов. Каждый из них описывается своей волновой функцией                                     В силу тождественности фермионов эту функцию можно записать и в виде:                                    Так как волновая функция двух фермионов должна быть антисимметричной и следует учесть два варианта представления (5) и (6), то запишем двухчастичную функцию в виде:                        где С – нормировочный множитель. Функцию (7) можно записать в виде определителя:      По аналогии с (8) можно записать волновую функцию для N невзаимодействующих фермионов:                  Рассмотрим случай, когда два фермиона находятся в одинаковых состояниях. Это означает, что среди набора волновых функций две будут одинаковые, например  Если рассмотреть систему из двух невзаимодействующих бозонов, то двухчастичная волновая функция бозонов запишется в виде:                       По аналогии с (10) волновая функция N невзаимодействующих бозонов будет иметь вид:                       где суммирование производится по всем перестановкам индексов i1i2….  | 
||
| 
 Последнее изменение этой страницы: 2018-05-29; просмотров: 449. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...  |