Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Простейшие показатели тесноты связи (коэффициент Фехнера, коэффициент корреляции рангов, коэффициент ассоциации).
Рассмотрим ряд простейших показателей тесноты связи, которые приблизительно измеряют зависимости между признаком-фактором «х» и признаком-результатом «y». Коэффициент Фехнера (1801-1887 г.г.) измеряет тесноту связи по числу совпадений знаков отклонений индивидуальных величин от средней. Степень тесноты связи такая же как у коэффициента корреляции. Он равен: , где с – число совпадений знаков отклонений индивидуальных значений от средней по признаку-фактору – «х» и признаку-результату «y». н – число несовпадений знаков отклонений. Этот показатель принимает значение от -1 до +1. Если знаки всех отклонений совпадут, то н = 0 и тогда = +1, что говорит о возможном наличии прямой связи. Если же знаки всех отклонений – разные, то с = 0 и = -1, что говорит о возможном наличии обратной связи. Рассчитаем этот показатель (см. табл. 16). Рассчитаем средние величины по «х» и по «y».
Таблица 16 Расчет коэффициентов Фенхера и корреляции рангов Спирмэна
Средняя списочная численность рабочих равна: Средний объем товарной продукции равна: Затем находим отклонения от средних величин и посчитаем число совпадений и несовпадений знаков. Коэффициент Фехнера составит , что говорит о слабой связи прямой между списочной численностью и товарной продукцией. Этот показатель целесообразно использовать для установления факта наличия при небольшом объеме исходной информации. Коэффициент корреляции рангов Спирмэна равен: , где – количество рангов – разность между рангов Р – ранг (порядковые номера вариантов). Он варьирует от -1 до +1 и измеряет тесноту связи при небольшом количестве исходной информации и измеряет тесноту связи как между количественными, так и между качественными признаками при условии, что значение этих признаков могут быть проранжированны по степени убывания или возрастания. Коэффициент корреляции рангов Спирмена равен: или 12% Теснота связи между признаком «x» и признаком «y» - слабая, прямая. Коэффициент ассоциации применяется для изменения тесноты связи для качественных альтернативных признаков. Он равен: , где a – противоположно b c – противоположно d Расчетная таблица в этом случае состоит из четырех ячеек (таблица «четырех полей»), стратегическое сказуемое, которое схематически может быть представлено в следующем виде (см. табл. 17)
Таблица 17 Расчетная таблица для коэффициента ассоциации
Коэффициент ассоциации равен: или 68,8% Данный показатель показывает частоту связи между показателями оценок, работающего по специальности и не по специальности. Связь между показателями будет тесная (68,8%), т.е. чем больше студенты будут работать по специальности, тем больше будет положительных оценок.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2018-06-01; просмотров: 323. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |