Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Классификация зубчатых передач




Зубчатые передачи классифицируются по ряду конструктивных признаков и особенностей.

В зависимости от взаимного расположения осей, на которых размещены зубчатые колеса, различают передачи цилиндрические (при параллельных осях), конические (при пересекающихся осях) и винтовые (при перекрещивающихся осях).

Винтовые зубчатые передачи применяются ограниченно, поскольку имеют низкий КПД из-за повышенного скольжения в зацеплении и низкую нагрузочную способность. Тем не менее, они имеют и некоторые достоинства – высокую плавность хода и возможность выводить концы валов за пределы передачи в обе стороны.

На рисунке 1 представлены наиболее широко применяемые виды зубчатых передач:

 

1 - цилиндрическая прямозубая передача;

2 - цилиндрическая косозубая передача;

3 - шевронная передача;

4 - реечная передача;

5 - цилиндрическая передача с внутренним зацеплением;

6 - винтовая передача;

7 - коническая прямозубая передача;

8 - коническая косозубая передача;

9 - коническая передача со спиралевидными зубьями;

10 - гипоидная передача.

В зависимости от вида передаваемого движения различают зубчатые передачи, не преобразующие передаваемый вид движения и преобразующие передаваемый вид движения. К последним относятся реечные зубчатые передачи, в которых вращательное движение преобразуется в поступательное или наоборот. В таких передачах рейку можно рассматривать, как зубчатое колесо с бесконечно большим диаметром.

Среди перечисленных видов зубчатых передач наиболее распространены цилиндрические передачи, поскольку они наиболее просты в изготовлении и эксплуатации, надежны и имеют небольшие габариты.

В зависимости от расположения зубьев на ободе колес различают передачи прямозубые, косозубые, шевронные и с круговыми (спиральными) зубьями.

Шевронные зубчатые колеса можно условно сравнивать со спаренными косозубыми колесами, имеющими противоположный угол наклона зубьев. Такая конструкция позволяет избежать осевых усилий на валы и подшипники опор, неизбежно появляющихся в обычных косозубых передачах.

В зависимости от формы профиля зубьев различают эвольвентные зубчатые передачи и передачи с зацеплением Новикова.

Эвольвентное зацепление в зубчатых передачах, предложенное еще в 1760 году российским ученым Леонардом Эйлером, имеет наиболее широкое распространение.

В 1954 году в России М. Л. Новиков предложил принципиально новый тип зацеплений в зубчатых колесах, при котором профиль зуба очерчен дугами окружностей. Такое зацепление возможно лишь для косых зубьев.

В принципе, возможно изготовление зубчатых передач и с другими формами зубьев – даже квадратными, треугольными или трапецеидальными. Но такие передачи имеют ряд существенных недостатков (непостоянство передаточного отношения, низкий КПД и т. д.), поэтому распространения не получили. В приборах и часовых механизмах иногда встречаются зубчатые передачи с циклоидальным зацеплением.

В зависимости от взаимного положения зубчатых колес передачи бывают с внешним и внутренним зацеплением. Наиболее распространены передачи с внешним зацеплением.

В зависимости от конструктивного исполненияразличают закрытые и открытые зубчатые передачи. В закрытых передачах колеса помещены в пыле- и влагонепроницаемые корпуса (картеры) и работают в масляных ваннах (зубчатое колесо погружают в масло до 1/3 радиуса).

В открытых передачах зубья колес работают всухую или при периодическом смазывании консистентной смазкой и не защищены от вредного воздействия внешней среды.

В зависимости от числа ступеней зубчатые передачи бывают одно- и многоступенчатые.

В зависимости от относительного характера движения осей зубчатых колес различают рядовые передачи, у которых оси неподвижны, и планетарные зубчатые передачи, у которых ось сателлита вращается относительно центральных осей.

***

21) напряжения действующие на зубья при передаче крутящего момента:
Контактное напряжение:

При циклических нагрузках допускаемые напряжения зависят от материала и термообработки и также от числа циклов нагружения (времени работы).

При постоянном режиме нагрузки:

Nц = 60nt – число циклов нагружения

При переменном режиме нагрузки:

 

усталостный изгиб:

Опасным нагружением считается такое, которое соответствует моменту начала входа зуба в зацепление. Интенсивность нагрузки q p создает две составляющие, из которых одна сжимает, а другая нагибает зуб.
Опасным сечением считается сечение у корня зуба со стороны растянутых волокон, так как закаленные стальные зубья слабее сопротивляются растяжению, чем сжатию

Напряжения изгиба:

Допускаемые напряжения определяются как часть от предела усталости (выносливости) материала при симметричном цикле нагружения

для нереверсивных передач

для реверсивных передач

22) Прямозубые цилиндрические шестерни

Нормальная сила, действующая по линии зацепления, разлагается на две составляющие силы:
P = P ncosα — окружное усилие;
R = P nsinα — радиальное усилие

На валы действуют те же силы, что и на зубья шестерен, и, кроме того, еще крутящий момент:

23)Особенности расчета косозубых и шевронных

Геометрические параметры. У косозубых колес зубья располагаются не по образующей делительного цилиндра, а составляют с ней некоторый угол β (рис. 4.15, где а — косозубая передача; б — шевронная, и рис. 4.16). Оси колес при этом остаются параллельными. Для нарезания косых зубьев используют инструмент такого же исходного контура, как и для нарезания прямых. Поэтому профиль косого зуба в нормальном сечении пп совпадает с профилем прямого зуба. Модуль в этом сечении должен быть также стандартным .

В торцовом сечении t t параметры косого зуба изменяются в зависимости от угла Р:

окружной шаг pt=pn/cos ,окружной модуль mt=mn/cosβ, делительный диаметр d=mtz=mnz/cosβ.

б)

Индексы п и t приписывают параметрам в нормальном и торцовом сечениях соответственно.

 

П рочность зуба определяют его размеры и форма в нормальномсечении. Форму косого зуба внормальном сечении принято определять через параметры эквивалентного прямозубого колеса(Рис.4.16). Нормальное к зубу сечение образует эллипс с полуосями с=г и e=r/cos β, где r=d/2. В зацеплении участвуют зубья, расположенные на малой оси эллипса, так как второе колесо находится нарасстоянии c—dl2. Радиус кривизны эллипса на малой оси. В соответствии с этим форма косого зуба в нормальном сечении определяется эквивалентным прямозубым колесом, диаметр которого .





Расчет конической передачи

Выбор материала зубчатых колес
Определение допускаемых напряжений
Определение чисел зубьев и передаточнго числа
Определение внешнего делительного диаметра колеса
Расчёт геометрических параметров зубчатой передачи
Проверочный расчёт контактных напряжений
на рабочих поверхностях зубьев
Определение сил в коническом зацеплении
Проверочный расчет зубьев на выносливость
по напряжениям изгиба

    1. Определение допускаемых напряжений.

С учетом фактических условий нагружения:

; ,










Последнее изменение этой страницы: 2018-04-12; просмотров: 488.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...