![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Канонические формы логических формул
Всякая логическая формула определяет некоторую булевую функцию. С другой стороны, для всякой булевой функции можно записать бесконечно много формул, ее представляющих. Одна из основных задач алгебры логики — нахождение канонических форм (т. е. формул, построенных по определенному правилу, канону), а также наиболее простых формул, представляющих булевы функции. Если логическая функция выражена через дизъюнкцию, конъюнкцию и отрицание переменных, то такая форма представления называется нормальной. Среди нормальных форм выделяют такие, в которых функции записываются единственным образом. Их называют совершенными. Особую роль в алгебре логики играют классы дизъюнктивных и конъюнктивных совершенных нормальных форм. В их основе лежат понятия элементарной дизъюнкции и элементарной конъюнкции. Формулу называют элементарной конъюнкцией, если она является конъюнкцией одной или нескольких переменных, взятых с отрицанием или без отрицания. Одну переменную или ее отрицание считают одночленной элементарной конъюнкцией. Формула называется элементарной дизъюнкцией, если она является дизъюнкцией (быть может, одночленной) переменных и отрицаний переменных.
ДНФ И СДНФ Формула называется дизъюнктивной нормальной формой(ДНФ), если она является дизъюнкцией неповторяющихся элементарных конъюнкций. ДНФ записываются в виде: А1 v А2 v ... v Аn , где каждое Аn— элементарная конъюнкция.
Формула Аот kпеременных называется совершенной дизъюнктивной нормальной формой (СДНФ), если: Например:А = х1 & НЕ х2 v х1 & х2 Совершенная дизъюнктивная нормальная форма представляет собой формулу, построенную по строго определенным правилам с точностью до порядка следования элементарных конъюнкций (дизъюнктивных членов) в ней. Она является примером однозначного представления булевой функции в виде формульной (алгебраической) записи.
Теорема о СДНФ Пусть f(x1 х2, …, хn) – булева функция от n переменных, не равная тождественно нулю. Тогда существует совершенная дизъюнктивная нормальная форма, выражающая функцию f.
Алгоритм построения СДНФ по таблице истинности: 1.В таблице истинности отмечаем наборы переменных, на которых значение функции f = 1.
Билет №10Канонические формы логических формул. Элементарная дизъюнкция. Конъюнктивная нормальная форма (КНФ). Совершенная КНФ (СКНФ). Теорема о существовании СКНФ.
КНФ И СКНФ Формула называется конъюнктивной нормальной формой (КНФ), если она является конъюнкцией неповторяющихся элементарных дизъюнкций. КНФ записываются в виде: А1 & А2 & ... & Аn , где каждое Аn– элементарная дизъюнкция. Формула А от k переменных называется совершенной конъюнктивной нормальной формой (СКНФ), если: Например:А = (х1 v НЕ х2) & (х1 v х2) Теорема о СКНФ Пустьf(x1 х2, …, хn) – булева функция от n переменных, не равная тождественно нулю. Тогда существует совершенная конъюнктивная нормальная форма, выражающая функцию f. Алгоритм построения СКНФ по таблице истинности: 1.В таблице истинности отмечаем наборы переменных, на которых значение функции f = 0. Из алгоритмов построения СДНФ и СКНФ следует, что если на большей части наборов значений переменных функция равна 0, то для получения ее формулы проще построить СДНФ, в противном случае – СКНФ. Пример Построить формулу для функции f(x1, х2, х3), заданной таблицей истинности:
Решение На большей части наборов значений переменных функция равна 0, поэтому проще построить СДНФ
Примечание: А это статьи о ДНФ и КНФ из любимой Википедии. Если кому то вдруг недостаточно материала, который был выше J |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2018-04-11; просмотров: 559. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |