Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Сложное движение точки. Основные понятия.




Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Центр тяжести тела. Методы нахождения центра тяжести.

Центр тяжести – центр системы параллельных сил тяжести частиц тела. Его радиус-вектор rC=∑Piri/P.

XC=∑Pixi/P; Yc=∑Piyi/P; ZC=∑Pizi/P

Вес тела P=∑Pi, Pi – сила тяжести частицы.

Методы определения координат центра тяжести тела.

1) Свойства симметрии: если тело имеет плоскость, ось или центр симметрии, то центр тяжести лежит на них.

2) Разбиение: Если известны центры тяжести отдельных частей тела, то

rC=(V1rC1+V2rC2+…+VnrCn)/V

Отрицательные массы:

rC=VсплrC-V1rC1-…-VnrCn, где Vk, rCk – объемы и радиус-векторы пустот тела.

3) Интегрирование: если тело нельзя разбить)

XC=(∫xdV)/V, YC=(∫ydV)/V,

ZC=(∫zdV)/V

Билет №20.

  1. Сложное движение точки. Теорема о сложении ускорений – теорема Кориолиса. Ускорение Кориолиса.
  2. Лемма о параллельном переносе силы.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Опр-е ускорения точки в сложном движении

VM=VO+[ ωr]+ Vr

WM=d VM/dt=(d VO/dt)+[ εr]+[ ω(dr/dt)]+d Vr/dt

dr/dt=[ ωr]+ Vr

WM=Wo+[ εr]+ [ω[ωr]]+[ ω Vr]+ [ ωVr]+Wr

d Vr/dt=[ ω Vr]+ Wr

Wk=2[ω Vr]

WM=WL+Wr+WK – кинематическая теорема Кариолиса

Абсолютное ускорение точки –это есть сумма переносного ускорения, относительного ускорения и ускорения Кариолиса

Переносное ускорение хар-ет измен-е переносной скорости в переносном движении.

Относительное ускорение хар-ет изм-е относительной скоростив в относительном движении. Ускорение Кариолиса хар-ет изм-е относительной скорости в переносном движении

Ускорение Кариолиса.

Согласно правилу векторного произведения, вектор ускорения Кариолиса ┴ пл-ти, в кот-й лежат вектора ω и Vr и направлена в ту сторону,что с конца этого вектора кратчайшее совмещение первого вектора ко второму ω к Vr кажется видным против хода часовой стрелки.

 

Лемма о параллельном переносе силы.

Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.

Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F’ и F”.

|F|=|F’|=|F”|. F~(F,F’,F”), т.к. (F’,F”) ~ 0, то

F ~(F,F’,F”) ~ (F,F,F”) ~ (F’,M(F,F”)).

Но M(F,F”)=BAxF=MB(F).

Получаем:

F~ (F’,M(F,F”))

Ч. т. д.

Билет №21.

  1. Сложное движение точки. Ускорение Кориолиса. Правило Жуковского. Примеры.
  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.

Сложное движение точки. Основные понятия.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Ускорение Кориолиса. Правило Жуковского.

Полное ускорение точки А, участвующей в сложном движении

aA=ar+ae+2ω×vr. Слагаемое aК=2ω×vr называется ускорением Кориолиса.

aK=2ωvrsin(ω,vr). Частные случаи:

А) ωº0 – смена знака

Б) vrº0 – относительный покой (смена знака движения).

В) sin(ω,vr)º0, ω||vr.

Правило Жуковского. Ускорение Кориолиса равно проекции относительной скорости на плоскость, перпендикулярную ω, увеличенной в 2ω раз и повернутой на 90° в направлении круговой стрелки ω.

2. Пара сил. ∑ моментов сил, составляющих пару.

Пара сил – система 2-х равных по модулю и противоположных по направлению сил, действующих на твердое тело. ∑F=0; ∑M≠0.

Расстояние между линиями действия – плечо d. Пара сил характеризуется плоскостью действия, моментом пары.

ТЕОРЕМА: Векторный момент пары сил равен векторному моменту одной из её сил относительно другой.

Доказательство:

MO(F1)+MO(F2)=rAxF1+rAxF2= rAxF1-rBxF1=(rA-rB) xF1. Из сложения треугольником OA+AB=OB=>AB=OB-OA => MO(F1)+MO(F2)=ABxF1=MA(F1) => сумма моментов сил, составляющих пару, не зависит от положения точки, относительно которой берутся моменты.

Билет №22.

  1. Сложение вращений твердого тела вокруг пересекающихся осей.
  2. Зависимость между главными моментами системы сил относительно двух центров приведения.

Сложение вращений твердого тела вокруг пересекающихся осей.

В случае вращательных относительного и переносного движений твердого тела, когда оси их вращений пересекаются в точке О, абсолютное движение будет сферическим движением вокруг точки О.

ω=ωe+ωr. Скорость любой точки, лежащей на линии по которой направлен вектор ω v=ω×r=0. Скорость любой точки М тела в данном случае можно определить так: vM=ω×rM=(ωe+ωrrM=ve+vr.

vee∙he; vrr∙hr; v=ω∙h;

где he, hr, h – кратчайшие расстояния от точки М до соответствующих осей вращения.

Зависимость между главными моментами сил относительно 2 центров приведения.

Главный момент системы сил относительно второго центра приведения О1 равен вектору главного момента системы сил относительно первого центра приведения О, плюс векторный момент главного вектора, приложенного в первом центре приведения относительно второго центра.

Доказательство:

Момент относительно любой точки O1 MO1=∑(rO1ixFi). Момент относительно первого центра приведения О MO=∑(rOixFi). Причем rO1i=O1O+rOi.

MO1=∑(O1O+rO1)xFi=O1OFi+ ∑(rOixFi)=MO+O1OxR= MO+MO1(R).

MO1= MO+MO1(R) (1)

Билет №23.

  1. Определение ускорений точек плоской фигуры при известном положении МЦУ.
  2. Система сходящихся сил. Условия равновесия.

Определение ускорения точек плоской фигуры с помощью МЦУ.

Зная положение МЦУ и ускорение какой-либо точки плоской фигуры можно найти ускорение всех точек плоской фигуры.

Пусть известна величина и направление точки А aA плоской фигуры и МЦУ – Q. Тогда ускорение любой другой точки B плоской фигуры будет лежать под углом α, равным углу между aA и QA против направления круговой стрелки ε.. Его величина aB=QB/√ε²+ωюбюб4=QBaA/ AQ.

Система сходящихся сил. Условия равновесия.

Система сил называется сходящейся, если линии всех сил пересекаются в одной точке. Попарно поочередно сложим эти силы, перенесенные к точке пересечения. Тогда R=∑Fk – главный вектор, так как R12=F1+F2, R13=R12+F3 и т. д.

Rx=∑Fix R=√(Rx²+Ry²+Rz²), cos(x,R)=Rx/R – аналитический способ задания.

Условия равновесия.

Система находится в равновесии когда главный вектор R=0.

А) Векторная форма: R=∑Fk=0;

Б) Аналитическая форма: Rx=Fkx=0, Ry=Fky=0, Rz=Fkz=0;

В) Графическая форма: замкнут многоугольник сил.

Билет №24.










Последнее изменение этой страницы: 2018-04-12; просмотров: 379.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...