Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Соотн. между уск. 2-х точек при плоском движении.
vB=vA+ωxAB. aB=dvB/dt=dvA/dt+(dω/dt)xAB+ ωx(dAB/dt)=aA+εxAB+ωx(ωx AB). Считая, что εхАВ=(aBA)τ; (aBA)n=ω²∙AB, окончательно получим: aB=aA+(aBA)τ+(aBA)n aA – ускорение полюса; aBA – ускорение движения вокруг полюса. 2. Сила трения скольжения. Законы Кулона для Fтр.ск.: 1)Сила трения скольжения лежит в интервале 0£ Fтр£ Fмах; 2) Сила трения скольжения не зависит от площади соприкасающихся тел, а зависит лишь от силы давления этого тела на поверхность 3)Сила тр.скольжения опр-ся по ф-ле: Fтр=fN, N-сила реакции опоры =Р, f-коэф-т трения скольжения 4)Коэф-т трения скольжения завис.от шероховатостей пов-тей трущихся тел, от температуры, от физич.состояния материала. Билет №12.
МЦС. Способы нахождения. При плоском движении твердого тела в каждый момент времени существует точка, скорость которой равна нулю. vP=vO+vPO=0, vO=ω∙OP=>OP= vO/ω. Способы нахождения: 1) на основе физического условия задачи. 2) На основе предваритель-ного определения скорости двух точек.
Трение качения. Коэффициент трения качения. Круглое тело вдавливается в опорную поверхность (дуга CD). Трение качения – сопротивление, возникающее при качении одного тела по поверхности другого. Полная реакция N’ опорной поверхности препятствует качению. Нам нужен момент сопротивления качению => заменим N’ и представим в виде Fтр. и N, приложенных в точке В, смещенной от центра на δ. Условия равновесия: N=P, F=Q. QmaxR=δN. Mтр.max=δ∙N. Момент сопротивления качению 0<Mк<Mк.max (не зависит от радиуса). Коэффициент трения качения δ при предельном состоянии равновесия (при Qmax) N (сила нормального давления) отстает на δ от вертикального радиуса. δ не зависит от материала, из которого сделано тело. Определяется экспериментально. Билет №13.
Вращение твердого тела вокруг неподвижной точки. Углы Эйлера. Движение твердого тела, у которого одна точка неподвижна, называется сферическим. Количество степеней свободы n=3. (XA, YA, ZA). Положение тела определяется с помощью углов Эйлера. Определение: свяжем с телом подвижную систему координат Oxyz. Плоскость xOy пересекает неподвижную плоскость x1Oy1 по прямой ОК – линии узлов. Ψ – угол прецессии; φ – угол собственного вращения θ – угол нутации. Все углы против часовой стрелке. Если заданы функции Ψ=f1(t); φ=f2(t); θ=f3(t) то движение полностью определено. Условия равновесия для произвольной простр.системы сил, а также следствия из этих уравнений. R=0 и Lo=0 –ур-я равновесия. Им соотв-ют 6 скалярных алгебраических ур-1 равновесия для простр.системы сил: åFkх=0 åFkу=0 åFkz=0 åМх(Fk)=0 åМу(Fk)=0 åМz(Fk)=0 – аналитическое условие равновесия для произвольной системы сил. Пусть все силы Î пл-ти хоу, тогда: åFkх=0 åFkу=0 åМо(Fk)=0 условие равновесия для произвольной плоской системы сил. Условие равновесия для плоской системы параллельных сил. Пустьсилы ôô оси оу, тогда åFkх=0 åМо(Fk)=0 Условие равновесия для пространственной системы параллельных сил. F1, F2, F3,…,Fn ôô оси оz, тогда: åFkz=0 åМх(Fk)=0 åМу(Fk)=0 Вторая форма условия равновесия для пороизвольной плоской системы сил: åМА(Fk)=0 åМВ(Fk)=0 åМС(Fk)=0 – причем т.А, т,В, т.С Ï одной прямой. - Докажем необходимость этих условий: Допустим, система сил нах-ся в равновесии. Тогда очевидно, что å моментов всех сил относительно любой точки пл-ти=0, т.е. выполняются эти 3 условия. - Докажем достаточность этих условий: Доказать достоточность – это значит доказать, что при выполнении этих усл-й система нах-ся в равновесии. Доказывать будем методом от противного, поэтому предположим, что эти усл-я выполняются, но система не нах-ся в равновесии, т.е. существует R*¹0 эквив.данной сист.сил. Рассмотрим усл-е первое и 2-е: для того, чтобы они выполнялись необходимо, чтобы R* проходил через т.А и т.В. Согласно третьему условию hR=0. Поскольку т.С Ï прямой АВ это может выполняться только в случае R*=0, т.е. наше предположение не верно и система действительно нах-ся в равновесии. Третья форма усл-я равновесия для произвольной плоской системы сил. åFkz=0 åМА(Fk)=0 åМВ(Fk)=0 – причем ось ох не перпендикулярна АВ. - Необходимость этого усл-я очевидна, т.к.если система нах-ся в равновесии, то главный вектор и главный момент =0 относительно любой точки. - Докажем достаточность этих условий: Предположим, что система не нах-ся в равновесии и сущ-ет, т.е. сущ-ет R* и R* ¹0 является равнодействующей данной системы сил. Для того, чтобы выполнялось усл-е 2 и 3 необходимо, чтобы R* проходил через АВ. Потребуем выполнения усл-я R*cosa=0, поскольку х не перпендикулярна АВ , то R* должно быть равно 0, т.о. мы доказали, что эти усл-я достаточны для того чтобы система находилась в равновесии. На основании двух изложенных форм ур-й равновесия для плоской системы параллельных сил можно записать еще один вид ур-я равновесия для плоской системы параллельных сил: åМА(Fk)=0 åМВ(Fk)=0, АВ не параллельна F1, F2, F3,…,Fn
Билет №14.
Опред. v 2-х точек с пом. МЦС. Зная положение МЦС и скорость какой-либо точки фигуры, можно найти скорости всех точек плоской фигуры. Пусть P – МЦС и известна скорость какой-либо точки фигуры vА, тогда ω= vА/AP. vB= vАPB/PA. Соединив конец вектора vB с точкой Р, получим распределение скоростей вдоль отрезка РВ. Теорема Вариньона. Если данная система сил имеет равнодействующую, то момент равнодействующей относительно произвольной точки О равен сумме моментов относительно той же точки. Пусть система сил (F1, F2,…,Fn) приводит к равнодействующей R, проходящей через точку С пересечения линий действия сил. Возьмем произвольную точку О, тогда: MO(R)=rxR=rx∑Fi=∑(rxFi)= ∑MOi(Fi). Ч. т. д..
Билет №15.
МЦУ. Способы нахождения. МЦУ – точка плоской фигуры, ускорение которой в данный момент времени равно нулю. aQ=aA+aAQ=0. Угол между aQA и QA tgα=aBAτ/aBAn=ε/ω², aAQ=√aAQτ+aAQn=AQ√ ε²+ω4 Þ 1 способ нахождения МЦУ: Отложить от точки А под углом α=arctg(ε/ω²) к aA отрезок AQ=aA/√(ε²+ω4 в направлении круговой стрелки ε. 2 способ нахождении МЦУ основан на условии задачи – если ускорение какой-либо точки по условию задачи равно нулю, то эта точка является МЦУ. Лемма о параллельном переносе силы. Сила, приложенная к какой-либо точке твердого тела, эквивалентна такой же силе, приложенной к любой другой точке тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения. Доказательство: пусть дана сила F. Приложим к какой-либо точке В систему F’ и F”. |F|=|F’|=|F”|. F~(F,F’,F”), т.к. (F’,F”) ~ 0, то F ~(F,F’,F”) ~ (F,F’,F”) ~ (F’,M(F,F”)). Но M(F,F”)=BAxF=MB(F). Получаем: F~ (F’,M(F,F”)) Ч. т. д.
Билет №16. |
||
Последнее изменение этой страницы: 2018-04-12; просмотров: 334. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |