Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Множина регресії ,множинний коєфіцієнт кореляції та його властивості .⇐ ПредыдущаяСтр 13 из 13
На практиці здебільшого залежна змінна пов’язана з впливом не одного, а кількох аргументів. Довірчий інтервал для множинної лінійної регресії Матриця Х містить m лінійно незалежних векторів-стовпців, а це означає, що ранг її дорівнюватиме m і визначник Отже, матриця має обернену. Дисперсії статистичних оцінок визначають з допомогою кореляційної матриці для вектора Коефіцієнт множинної регресіїТісноту між ознаками Y та X, де , вимірюють з допомогою коефіцієнта множинної кореляції R, що є узагальненням парного коефіцієнта кореляції rij і обчислюється за формулою . Чим ближче значення R до ±1, тим краще вибрано функцію регресії Нормування коефіцієнтів регресії Множинна лінійна регресія дає змогу порівняти вплив на досліджуваний процес різних чинників. У загальному випадку змінні репрезентують чинники, що мають різні одиниці виміру (кілограми, гривні, метри тощо). Отже, для того щоб порівняти і з’ясувати відносну вагомість кожного з чинників, використовують так звані нормовані коефіцієнти регресії, які визначають за формулою
де — коефіцієнт регресії після нормування; — виправлене середнє квадратичне відхилення змінної — виправлене середнє квадратичне відхилення ознаки Y. Нелінійна регресія. Якщо в рівняння множинної регресії змінні входять як , то регресія називається нелінійною. У загальному випадку нелінійна регресія записується в такому вигляді:
де параметри є сталими невідомими величинами, які підлягають статистичним оцінкам, а — випадкова величина, яка має нормальний закон розподілу з числовими характеристиками і при цьому випадкові величини між собою не корельовані. Реалізуючи вибірку обсягом n, згідно з (563), дістанемо систему нелінійних рівнянь виду:
|
|||
Последнее изменение этой страницы: 2018-04-12; просмотров: 382. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |