![]() Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Інтервальний статистичний розподіл
Перелік часткових інтервалів і відповідних їм частот, або відносних частот, називають інтервальним статистичним розподілом вибірки. У табличній формі цей розподіл має такий вигляд:Тут h = xi – xi–1 є довжиною часткового i-го інтервалу. Як правило, цей інтервал береться однаковим. Інтервальний статистичний розподіл вибірки можна подати графічно у вигляді гістограми частот або відносних частот, а також, як і для дискретного статистичного розподілу, емпіричною функцією F *(x) (комулятою). 46) Полігон частот і відносних частот. Дискретний статистичний розподіл вибірки можна зобразити графічно у вигляді ламаної лінії, відрізки якої сполучають координати точок (xi; ni), або (xi; Wi). У першому випадку ламану лінію називають полігоном частот, у другому — полігоном відносних частот.
Гістограма частот та відносних частот.Гістограма частот являє собою фігуру, яка складається з прямокутників, кожний з яких має основу h і висотy Гістограма відносних частот є фігурою, що складається з прямокутників, кожний з яких має основу завдовжки h і висоту, що дорівнює
Площа гістограми частот Площа гістограми відносних частот
47) Числові характеристики: вибіркова середня величина називають вибірковою середньою величиною дискретного статистичного розподілу вибірки. Тут xi — варіанта варіаційного ряду вибірки; ni — частота цієї варіанти; n — обсяг вибірки ( Якщо всі варіанти з’являються у вибірці лише по одному разу, тобто ni =1, то
2) дисперсія. Для вимірювання розсіювання варіант вибірки відносно Дисперсія вибірки — це середнє арифметичне квадратів відхилень варіант відносно або 3) середнє квадратичне відхилення вибірки sB. При обчисленні DB відхилення підноситься до квадрата, а отже, змінюється одиниця виміру ознаки Х, тому на основі дисперсії вводиться середнє квадратичне відхилення яке вимірює розсіювання варіант вибірки відносно 4) мода (Mo*). Модою дискретного статистичного розподілу вибірки називають варіанту, що має найбільшу частоту появи. Мод може бути кілька. Коли дискретний статистичний розподіл має одну моду, то він називається одномодальним, коли має дві моди — двомодальним і т. д.; 5) медіана (Me*). Медіаною дискретного статистичного розподілу вибірки називають варіанту, яка поділяє варіаційний ряд на дві частини, рівні за кількістю варіант; 48) Визначення статистичної оцінки Інформація, яку дістали на основі обробки вибірки про ознаку генеральної сукупності, завжди міститиме певні похибки, оскільки вибірка становить лише незначну частину від неї (n < N), тобто обсяг вибірки значно менший від обсягу генеральної сукупності.Тому слід організувати вибірку так, щоб ця інформація була найбільш повною (вибірка має бути репрезентативною) і забезпечувала з найбільшим ступенем довіри про параметри генеральної сукупності або закон розподілу її ознаки. Параметри генеральної сукупності M(xi)=Xг, Dг, δг, Mo, rxy є величинами сталими, але їх числове значення невідоме. Ці параметри оцінюються параметрами вибірки: Тут через θ позначено оцінювальний параметр генеральної сукупності, а через 49) Точкові та інтервальні статистичні оцінки Статистична оцінка Точкова статистична оцінка називається ґрунтовною, якщо у разі необмеженого збільшення обсягу вибірки що покриває оцінюваний параметр θ генеральної сукупності з заданою надійністю g, називають довірчим. 51) Нульова та альтернативна статистичні гіпотези Гіпотезу, що підлягає перевірці, називають основною. Оскільки ця гіпотеза припускає відсутність систематичних розбіжностей (нульові розбіжності) між невідомим параметром генеральної сукупності і величиною, що одержана внаслідок обробки вибірки, то її називають нульовою гіпотезою і позначають Н0. Зміст нульової гіпотези записується так: 53) Статистичний критерійДля перевірки правильності висунутої статистичної гіпотези вибирають так званий статистичний критерій, керуючись яким відхиляють або не відхиляють нульову гіпотезу. Статистичний критерій, котрий умовно позначають через K, є випадковою величиною, закон розподілу ймовірностей якої нам заздалегідь відомий. Так, наприклад, для перевірки правильності 54) Критична область Множину W всіх можливих значень статистичного критерію K можна поділити на дві підмножини А і
Якщо при Якщо ж при Лівобічна і правобічна області визначаються однією критичною точкою, двобічна критична область — двома критичними точками, симетричними відносно нуля. 55) Перевірка правельності нульової гіпотези про нормальний закон розподілу ознаки генеральної сукупності Для перевірки правильності Н0 задається так званий рівень значущості a. a — це мала ймовірність, якою наперед задаються. Вона може набувати значення a = 0,005; 0,01; 0,001. В основу перевірки Н0 покладено принцип 1. Сформулювати Н0 й одночасно альтернативну гіпотезу Нa. 2. Вибрати статистичний критерій, який відповідав би сформульованій нульовій гіпотезі. 3. Залежно від змісту нульової та альтернативної гіпотез будується правобічна, лівобічна або двобічна критична область, а саме: нехай
4. Для побудови критичної області (лівобічної, правобічної чи двобічної) необхідно знайти критичні точки. За вибраним статистичним критерієм та рівнем значущості a знаходяться критичні точки. 5. За результатами вибірки обчислюється спостережуване значення критерію 6. Відхиляють чи приймають нульову гіпотезу на підставі таких міркувань: у разі, коли для двобічної критичної області або
57) Критерій узгодженості Пірсона.Критерій узгодженості Пірсона є випадковою величиною, що має розподіл 58) Дисперсійний аналіз був створений спочатку для статистичної обробки агрономічних дослідів. В наш час його також використовують як в економічних експериментах, так і технічних, соціальних. Сутність цього аналізу полягає в тому, що загальну дисперсію досліджуваної ознаки розділяють на окремі компоненти, які обумовлені впливом певних конкретних чинників. Істотність їх впливу на цю ознаку здійснюється методом дисперсійного аналізу. Відповідно до дисперсійного аналізу будь-який його результат можна подати у вигляді суми певної кількості компонент. Так, наприклад, якщо досліджується вплив певного чинника на результат експерименту, то модель, що описує структуру останнього, можна подати так:
При цьому У разі проведення дисперсійного аналізу досліджуваний масив даних, одержаних під час експерименту, поділяють на певні групи, які різняться дією на результати експерименту певних рівнів факторів. Вважається, що досліджувана ознака має нормальний закон розподілу, а дисперсії в кожній окремій групі здобутих значень ознаки однакові. Ці припущення необхідно перевірити.
59) Однофакторний аналіз.Нехай потрібно дослідити вплив на ознаку Х певного одного фактора. Результати експерименту ділять на певне число груп, які відрізняються між собою ступенем дії фактора. Для зручності в проведенні необхідних обчислень результати експерименту зводять в спеціальну таблицю:
Таблиця результатів спостережень
|