Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Комбинативная изменчивость и ее механизмы




Комбинативная изменчивость

Генотипическая, или наследственная изменчивость, представляет собой изменения фенотипа, обусловленные изменениями генотипа.

Она вызывается мутациями и их комбинациями при половом размножении (например, наследуемая комолость у крупного рогатого скота).

В зависимости от характера варьирования генетического материала различают комбинативную и мутационную наследственную изменчивость. Комбинативная изменчивость обусловлена образованием у потомков новых сочетаний генов в генотипах, формирующихся в результате перекомбинирования генов и хромосом в процессе полового размножения. Бесконечное разнообразие генотипов живых организмов, уникальность каждого генотипа обусловлены комбинативной изменчивостью. При этом типе изменчивости изменяются сочетания генов и характер их взаимодействия в генотипе, а сами гены остаются неизмененными.

Комбинативная изменчивость, являясь результатом перекомбини-рования генов родительских особей в генотипах потомков, основывается на трёх основных механизмах.

1. Независимое расхождение в дочерние клетки (сперматоциты II, ооцит II и первое редукционное тельце) гомологичных хромосом из каждой пары (имеет место при I делении мейоза в ходе гаметогенеза). Например, даже для 2-х пар хромосом возможны 2 варианта расхождения хромосом в дочерние клетки и 4 типа сперматозоидов (рис. 76).

Кроссинговер происходит в начале мейоза, когда гомологичные хромосомы выстраиваются друг против друга. При этом участки гомологичных хромосом перекрещиваются, отрываются, а затем вновь присоединяются, но уже к другой хромосоме. В конечном итоге образуются четыре хромосомы с разными комбинациями генов. Хромосомы, называемые «рекомбинантными», несут новые комбинации генов (Ab и аВ), отсутствовавшие в исходных хромосомах (АВ и ab)

2. Случайное сочетание гамет, а следовательно, гомологичных (отцовской и материнской) хромосом при оплодотворении. Для отмеченных выше 4 типов спермиев сугубо случайным будет участие одного из них в оплодотворении яйцеклетки, и различными будут результаты конкретного сочетания одного из вариантов мужских хромосом с одним (также из 4-х возможных, т.к. три варианта унесены редукционными тельцами и прекратили существование) из вариантов гомологичных им женских хромосом.

3. Обмен отдельными аллелями между гомологичными хромосомами в процессе кроссинговера мейоза. После него комбинации аллелей в хромосомах спермиев характеризуются новыми вариантами, отличающимися от таковых соматических клеток организма (рис. 77).

Комбинативная изменчивость объясняет, почему у детей обнаруживаются новые сочетания признаков родственников по материнской и отцовской линиям, причём в таких конкретных вариантах, которые не были свойственны ни отцу, ни матери, ни дедушке, ни бабушке и т.д.

Благодаря комбинативной изменчивости создаётся разнообразие генотипов в потомстве, что имеет большое значение для эволюционного процесса в связи с тем, что: 1) увеличивается разнообразие материала для эволюционного процесса без снижения жизнеспособности особей; 2) расширяются возможности приспособления организмов к изменяющимся условиям среды и тем самым обеспечивается выживание группы организмов (популяции, вида) в целом.

Комбинативная изменчивость используется в селекции с целью получения более ценного в хозяйственном отношении сочетания наследственных признаков. В частности применяется явление гетерозиса, повышения жизнеспособности, интенсивности роста и других показателей при гибридизации между представителями различных подвидов или сортов. Ярко выражено оно, например, у кукурузы (рис. 78), обусловливая значительный экономический эффект. Противоположный эффект даёт явление инбридинга или близкородственного скрещивания - скрещивания организмов, имеющих общих предков. Общность происхождения скрещиваемых организмов увеличивает у них вероятность наличия одних и тех же аллелей любых генов, а следовательно - вероятность появления гомозиготных организмов. Наибольшая степень инбридинга достигается при самоопылении у растений и самооплодотворении у животных. Гомозиготность увеличивает возможность проявления рецессивных аллельных генов, мутагенные изменения которых приводят к появлению организмов с наследственными аномалиями.

Результаты изучения явления комбинативной изменчивости используются в медико-генетическом консультировании, особенно на его втором

и третьем этапах: прогноз потомства, формирование заключения и объяснение смысла генетического риска. В консультировании будущих супружеских пар используется установление вероятности наличия у каждого из двух индивидуумов аллелей, полученных от общего предка и идентичных по происхождению. Для этого используют коэффициент родства, выражаемый в долях единицы. У монозиготных близнецов он равен 1, у родителей и детей, братьев и сестёр - 1/2, у деда и внука, дяди и племянника -1/4, у двоюродных сибсов (братьев и сестёр) - 1/8, у троюродных сибсов -1/32 и т.д.

Для характеристики степени гомозиготизации организма используется коэффициент инбридинга, который отражает долю локусов в генотипе потомка конкретной пары родителей, по которым он гомозиготен:

F = (l/2)"+"1+1-(l + Fr).

При этом п = П] и равно числу поколений, считая от общего предка до родителей индивидуума; Fz - коэффициент инбридинга для общего предка (если предок неинбреден, то Fz = 0).

Неблагоприятные последствия инбридинга высокой степени (с большим значением коэффициента инбридинга) служат генетическим обоснованием нежелательности близкородственных браков у человека. Различают следующие системы браков: 1) случайный подбор брачной пары в определённой группе людей (панмиксия); 2) более частое, чем при панмиксии, вступление в брак индивидуумов, состоящих в родстве (инбридинг); 3) более редкое, чем при панмиксии, вступление в брак индивидуумов, состоящих в родстве (аутбридинг).

Наряду с системами браков выделяют два типа образования брачных

пар:

1) положительное ассортативное (избирательное) образование брачных пар, или более частое вступление в брак индивидуумов, сходных по определённым фенотипическими признаками (браки между глухонемыми, или сходными по росту, по умственному развитию и т.п.);

2) отрицательное ассортативное образование брачных пар, или более редкое вступление в брак индивидуумов со сходными определёнными признаками (например, рыжеволосые особи избегают вступать в брак друг с другом).

Как инбридинг, так и положительное ассортативное образование брачных пар повышают (последнее, правда, в меньшей степени) уровень гомозиготности потомков, в том числе и по локусам вредных рецессивных аллелей. Аутбридинг, наоборот, повышает степень гетерозиготности и во многих случаях повышает уровень жизнеспособности. Возможные последствия инбридинга и положительного ассортативного образования брачных пар используются в медико-генетическом консультировании потенциальных брачных партнёров.

С учётом этого во многих странах существуют запретные (инцест-ные) браки между ближайшими родственниками, например, братом и сестрой, а в более чем в 1/3 штатов США запрещены браки между двоюродными сибсами. Хотя история свидетельствует о допущении в отдельных случаях таких браков (в племени эрнодан, живущем на полуострове Индостан, старшая дочь обычно становится второй женой отца). Более высокая степень близкородственных браков наблюдается в малых по размерам группах людей, изолированных географически, или из-за религиозных и других убеждений.

ВОПРОС42

Геном как эволюционно сложившаяся система генов. Функциональная класси­фикация генов (структурные, регуляторы, модуляторы). Гены общекле­точных функций ("домашнего хозяйства") и гены специфических функ­ций ("роскоши"). Конститутивные и регулируемые гены

Гено́м — совокупность всех генов организма; его полный хромосомный набор.

Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК.

Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот — это ДНК митохондрий, хлоропластов и других органоидов клеток. Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены.

Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, во-первых, генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом часто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.

Классификация

Структурные гены — уникальные компоненты генома, представляющие единственную последовательность, кодирующую определенный белок или некоторые виды РНК. (См. также статью гены домашнего хозяйства).

Гены домашнего хозяйства (англ. Housekeeping gene) — это гены, которые экспрессируются во всех клетках (или практически во всех тканях и клетках) организма на относительно постоянном уровне.

 

Гены домашнего хозяйства используют в качестве стандарта (нормализатора) при полимеразной цепной реакции, поскольку предполагается, что на их экспрессию не влияют условия эксперимента.

К наиболее распространенным генам домашнего хозяйства относятся:

Актин

GAPDH

альдолаза

гексокиназа

циклофиллин

Гипоксантин-гуанин фосфорибозилтрансфераза

Функциональные гены — регулируют работу структурных генов.

Гены, относящиеся к этой группе, экспрессируются лишь в специализированных клетках и являются маркерами дифференцированных состояний.

Впрочем, деление генов на активные и неактивные условно, о чем говорят приведенные выше сведения о транспозонах. Спектр функционирующих генов зависит от тканевой принадлежности клетки, от периода ее жизненного цикла, стадии индивидуального развития клетки. Основная масса генов, активно транскрибируемых в клетке, - гены, обеспечивающие синтез белков общего назначения (белки рибосом, гистоны, тубулины, микротрубочки, микрофиламенты и т. д.). Эта группа называется генами «домашнего хозяйства». Такие гены также называют конститутивными, поскольку их синтез обусловлен связыванием РНК-полимеразы с инициальной точкой копирования - промотором. Однако для считывания некоторых генов требуется промежуточное явление - стимулирование соединения РНК-полимеразы и промотора. Эту группу генов называют регулируемыми.

 

ВОПРОС43

Регуляция экс­прессии генов у про и эукариот

Регулируемая экспрессия генов предполагает высокоспецифическое изменение внутриклеточного содержания кодируемых этими генами белков и нуклеиновых кислот в ответ на действие продуктов экспрессии других генов или регуляторных сигналов внутри- и внеклеточного происхождения, например, низкомолекулярных метаболитов, ксенобиотиков или физических факторов (температура, ионизирующее излучение и т.п.). Избирательность таких воздействий становится возможной благодаря образованию высокоспецифических белок-белковых комплексов, комплексов лиганд-рецептор, распознаванию белками определенных последовательностей нуклеотидов ДНК или РНК, а также вследствие комплементарных взаимодействий нуклеиновых кислот друг с другом.

 Избирательное действие низкомолекулярных биорегуляторов на гены происходит через рецепторы белковой природы по схеме: высоко- или низкомолекулярный эффектор (лиганд) специфически связывается с регуляторным белком-рецептором, изменяя конформацию рецептора таким образом, что он приобретает способность распознавать регуляторные последовательности нуклеиновых кислот или других регуляторных белков. Подобные взаимодействия, происходящие на одном из этапов биосинтеза белка, далее сопровождаются изменением эффективности экспрессии его гена. Наиболее продуктивно можно влиять на экспрессию гена через его транскрипцию, при этом должен изменяться внутриклеточный уровень соответствующих мРНК, который может лимитировать биосинтез белков рибосомами. Регуляция экспрессии генов на уровне транскрипции широко распространена в природе.

Регуляция экспрессии прокариотических генов

Одно из самых важных свойств гена - способность к экспрессии. За это свойство отвечают различные генетические элементы, которые мы должны встроить в векторную молекулу, несущую ген.

Многие бактериальные гены устроены таким образом, что они способны функционировать с существенно разной эффективностью. У E. coli, например, относительное содержание различных белков варьирует в очень широких пределах (от менее чем 0.1% до 2%) в зависимости от их функций; при этом каждый белок в хромосоме E. coli кодируется единственным геном. Такие вариации обусловлены действием системы контроля генной экспрессии, которая осуществляется главным образом на уровне транскрипции ДНК. Таким образом, чаще всего уровень активности гена связан с количеством синтезируемой на нем мРНК, то есть с активностью фермента РНК-полимеразы.

Последовательности ДНК, расположенные перед началом структурного гена и определяющие степень активности РНК-полимеразы, называются регуляторными последовательностями. Одна из таких последовательностей представляет собой участок ДНК, с которым связывается РНК-полимераза. Этот участок называется промотором.

 

Последовательность оснований промотора определяет частоту инициации синтеза иРНК, причем замена одного основания в этой последовательности может привести к уменьшению частоты инициации в 1000 раз.

Промотор может быть сильным и слабым. Сильный промотор инициирует синтез иРНК часто, слабый - гораздо реже. С другой стороны, промотор может быть регулируемым и нерегулируемым. Например, промотор β-лактамазы нерегулируемый, но сильный. Использование таких промоторов не всегда удобно. Дело в том, что большое количество белка может блокировать рост бактерий. Кроме того, интенсивная транскрипция рекомбинантной ДНК может помешать репликации плазмиды, и она будет утрачена. Поэтому удобнее использовать регулируемые сильные промоторы (индуцибельные), включение которых, а значит и синтез чужеродного белка можно осуществить, когда получена большая бактериальная масса.

Некоторые плазмидные векторы содержат промотор, работа которого регулируется температурочувствительным белковым продуктом гена-репрессора. Белок-репрессор активен при определенных температурах и блокирует действие промотора. Повысив температуру до 42 оС, можно "включить" промотор и быстро получить большое количество требуемого белка.

В качестве индуцибельных промоторов используют также Trp-промотор триптофанового оперона, который регулируется триптофановым голоданием, lac-промотор лактазного оперона, который индуцируется субстратом (лактозой) и другие.

Интенсивность транскрипции определенных структурных генов может зависеть от эффективности ее терминации, в частности, от того, как часто РНК-полимераза прекращает синтез РНК, не дойдя до этих генов. Сравнительно недавно обнаружено, что во многих оперонах Е.coli, контролирующих биосинтез аминокислот, между промотором и первым структурным геном имеется терминирующая последовательность. В определенных условиях происходит образование терминирующего сигнала, ослабляющего интенсивность транскрипции.

Это явление получило название аттенуации, а участок ДНК - аттенуатор (ослабитель). Как и репрессия, аттенуация зависит от присутствия в среде соответствующих аминокислот. Например, избыток триптофана в клетках триптофанзависимых мутантов, дефектных по репрессору, только 1 из 10 молекул РНК-полимеразы, начавших транскрипцию, преодолевает аттенуатор и считывает структуру генов. Удаление триптофана втрое повышает эффективность транскрипции генов. В отличие от репрессии, антенуация зависит не от самой аминокислоты, а от триптофанил - тРНК (аминокилоты, присоединенной к соответствующей тРНК).

 

На эффективность продуктивности рекомбинантной ДНК в существенной степени влияет количество копий этой ДНК в расчете на клетку. Суммарная активность экспрессируемого гена растет с ростом копийности плазмиды. Таким образом, используя многокопийные плазмиды, можно достичь сверхсинтеза нужных белковых продуктов. Обычно используемые плазмидные векторы (pBR 322 и др.) поддерживаются в клетке в количестве 20-50 копий. Сейчас исследователи имеют в своем распоряжении температурно-чувствительные мутантные плазмиды, способные накопить до одной-двух тысяч копий на клетку, не нарушая ее жизненно-важных функций. Таким образом можно достичь сверхпродукции плазмидных генов бактериальными штаммами-сверхпродуцентами.

Регуляция экспрессии у E. coli происходит также и на уровне трансляции. Последовательность оснований длиной 6-8 нуклеотидов, расположенная непосредственно перед инициирующим кодоном АУГ, определяет эффективность трансляции. Эта последовательность представляет собой участок связывания мРНК с рибосомой. Как правило, он отстоит на 8 нуклеотидов от инициирующего кодона, и его сдвиг в ту или иную сторону может резко снижать эффективность трансляции соответствующей мРНК. Описанный участок называется последовательностью Шайна-Дальгарно, по имени исследователей, впервые его идентифицировавших.

В состав вектора кроме всего прочего должен входить маркерный ген, позволяющий селектировать измененные клетки. Часто в качестве селективных используют широко распространенные в природе гены ферментов, модифицирующих антибиотики и инактивирующие их действие.

Регуляция экспрессии генов эукариот

Особенности организации генома эукариот

У эукариотических организмов механизм регуляции транскрипции гораздо более сложен. В результате клонирования и секвенирования генов эукариот обнаружены специфические последовательности, принимающие участие в транскрипции и трансляции.

Для эукариотической клетки характерно:

1. Наличие интронов и экзонов в молекуле ДНК.

2. Созревание и-РНК - вырезание интронов и сшивка экзонов.

3. Наличие регуляторных элементов, регулирующих транскрипцию, таких как: а) промоторы - 3 вида, на каждый из которых садится специфическая полимераза. РНК-полимераза I реплицирует рибосомные гены, РНК-полимераза II - структурные гены белков, РНК-полимераза III - гены, кодирующие небольшие РНК. Промоторы РНК-полимеразы I и РНК-полимеразы II находятся перед участком инициации транскрипции, промотор РНК-полимеразы III - в рамках структурного гена; б) модуляторы - последовательности ДНК, усиливающие уровень транскрипции; в) (энхансеры) усилители - последовательности, усиливающие уровень транскрипции и действующие независимо от своего положения относительно кодирующей части гена и состояния начальной точки синтеза РНК; г) терминаторы - специфические последовательности, прекращающие и трансляцию, и транскрипцию.

Эти последовательности по своей первичной структуре и расположению относительно инициирующего кодона отличаются от прокариотических, и бактериальная РНК-полимераза их не "узнает". Таким образом, для экспрессии эукариотических генов в клетках прокариот нужно, чтобы гены находились под контролем прокариотических регуляторных элементов. Это обстоятельство необходимо учитывать при конструировании векторов для экспрессии.

Структурные гены, обеспечивающие жизнедеятельность эукариотической клетки, обычно транскрибируется в большинстве активно функционирующих клеток. В то же время, специфические гены, уникальные тех или иных тканей или органов, транскрибируются и транслируются только в определенных клетках. Например, гены, кодирующие α- и β-субъединицы гемоглобина взрослого человека, экспрессируются исключительно в клетках - предшественниках эритроцитов. Число разных мРНК, специфичных для разных клеток, варьирует от единиц до десятков.

Способность клеток включать (активировать) или выключать (ингибировать) структурные гены крайне важна для поддержания клеточной специфичности и экономного расходования энергетических ресурсов. Отсюда и многообразие факторов транскрипции, имеющих белковую природу. Многие из них связываются непосредственно с нуклеотидной последовательностью длиной менее 10 п.н., называемой по-разному: боксом, модулем, элементом инициации, регуляторным элементом. В отличие от прокариот у эукариот опероны в большинстве своем отсутствуют, т. е. каждый эукариотический структурный ген имеет свой собственный набор регуляторных элементов. Существенную роль в регуляции транскрипции у эукариот, помимо опосредованной взаимодействием между ДНК и белками, играют также белок-белковые взаимодействия.

Несмотря на индивидуальность набора регуляторных элементов у структурных генов эукариот, каждый из них имеет промоторный участок (ТАТА-бокс, или бокс Хогнесса) из восьми нуклеотидов, включающий последовательность TATA; последовательность ССААТ (САТ-бокс); участок из повторяющихся динуклеотидов GC (GC-бокс). Эти элементы находятся на расстоянии 25, 75 и 90 п.н. от сайта инициации соответственно:

Регуляторные элементы структурных генов эукариот. Отрицательное значение показывает, что эти элементы находятся в молекуле ДНК слева от сайта инициации транскрипции, обозначенного +1. Стрелка — направление транскрипции (по Глик Б. , Пастернак, Дж., 2002)

Транскрипция структурного гена эукариот начинается со связывания с ТАТА-боксом фактора транскрипции, который представляет собой комплекс по крайней мере из 14 белков. Затем с ним и участками ДНК, примыкающими к ТАТА-боксу, связываются другие факторы транскрипции, и, наконец, со всем этим транскрипционным комплексом связывается РНК-полимераза II. Затем при участии дополнительных факторов происходит инициация транскрипции в точке +1 . Если последовательность TATA отсутствует или существенно изменена, то транскрипция структурного гена становится невозможной.

Пример регуляции транскрипции путем взаимодействия специфических белковых факторов с ТАТА-боксом на этих рисунках ниже.

На первой фотографии показано слабое свечение свечение маркера, показывающего, что синтез идет, но не интенсивно, так как TATA-бокс не активирован.

На второй фотографии клетка светится интенсивно, она буквально нафарширована специфичным белком, синтез которого был запущен активацией TATА-бокса. Продукция белка была настолько высокой, что плашки с клетками даже в видимом свете были пурпурного цвета.

Идентифицированы также факторы транскрипции, специфичные для регуляторных элементов ССААТ и GC, но пока неясно, как ДНК-белковые взаимодействия могут влиять в этом случае на эффективность транскрипции, если элементы расположены на расстоянии более 75 п.н. от сайта инициации. Кроме того, на расстоянии сотен и даже тысяч пар оснований от сайта инициации находится энхансерная последовательность, которая многократно повышает скорость транскрипции структурных генов. Специфическое сворачивание ДНК при формировании нативной структуры сближает удаленные регуляторные элементы и соответствующие структурные гены. Кроме того, факторы транскрипции, которые связываются с определенными энхансерами и регуляторными элементами, могут образовывать цепочку, соединяющую удаленные друг от друга сайты.

Некоторые репрессированные (неэкспрессирующиеся) гены активируются каскадом событий, который запускается каким-либо специфическим внеклеточным сигналом, например повышением температуры или синтезом гормона. Гормон, поступив в кровоток, связывается с рецепторами специфических клеток, облегчающими его проникновение в клетку. Оказавшись в клетке, гормон вступает во взаимодействие с одним из клеточных белков и изменяет его конформацию. В таком измененном состоянии белок проникает в ядро и связывается со специфическим регуляторным элементом, который инициирует транскрипцию соответствующего гена. Существуют также белки, которые, взаимодействуя с регуляторными элементами, блокируют транскрипцию.

Регуляция транскрипции у эукариот очень сложна. Структурный ген может иметь множество регуляторных элементов, которые активируются специфическими сигналами в клетках разного типа в разное время клеточного цикла. В то же время, некоторые структурные гены находятся под контролем уникального фактора транскрипции. Специфические белки могут взаимодействовать с определенными регуляторными элементами и блокировать транскрипцию или связываться со всем транскрипционным комплексом еще до инициации транскрипции или во время элонгации

 

ВОПРОС44

Геномные мутации, причины и механизмы их возникновения. Клас­сификация геномных мутаций. Значение геномных мутаций. Нарушение мейоза и митоза как механизмы возникновения геномных генеративных и соматических мутаций. Антимутационные механизмы.

Геномные мутации

Число, форма и размер хромосом являются систематическими признаками для каждого вида. Совокупность генов, заключенную в гаплоидном наборе, называют геномом, а число хромосом в гаплоидном наборе — основным числом и обозначают буквой п. В некоторых случаях при нарушении механизмов митоза или мейоза происходит нарушение процесса расхождения хромосом к полюсам клетки — приводящее к нерасхождению хромосом, а также к процессу удвоения хромосом, без цитогенеза. В результате тех и других нарушений возникают клетки с измененным числом хромосом.

Изменение числа хромосом может происходить за счет увеличения или уменьшения числа целых гаплоидных наборов или отдельных хромосом. Организмы, у которых произошло умножение целых гаплоидных наборов, называют полиплоидными. Организмы, у которых число хромосом не является кратным гаплоидному, называют анеуплоидами, илигетероплоидами.

Возникновение геномных мутаций у млекопитающих известно только в качестве аномалий и приводит к гибели эмбриона на ранних стадиях развития. Однако изредка вследствие нерасхождения половых хромосом либо при одном, либо при двух делениях мейоза, возникает так называемая трисомия, приводящая к рождению так называемых интерсексов XXY; а также моносомия — ХО, вызывающая серьезные гормональные нарушения у плода.

При исследованиях человека выявлена более низкая выживаемость детей до 5 лет, несущих патологический набор половых хромосом (Бочков с соавт., 1979, 1984). Аномалии половых хромосом у собак и кошек чаще всего представлены в виде трисомий или моносомий. Эти типы аномалий возникают при слиянии двух видов гамет — нормальной и патологической, несущей лишнюю половую хромосому или вовсе не имеющей половой хромосомы.

Синдром Клайнфельтера впервые описан у человека в 1942 году. Причиной аномалии является нерасхождение хромосом, приводящее к появлению лишней хромосомы в геноме, и обозначаемое XXY. Синдром Клайнфельтера встречается у крупного рогатого скота, лошадей, овец, свиней, кошек, собак, а также человека. Он характеризуется недоразвитием гонад, повышенным выделением гонадотропина и другими изменениями. Особи с этим синдромом обладают признаками мужского пола, однако имеют недоразвитые семенники и вследствие этого стерильны.

Инактивированная хромосома превращается в небольшую глыбку хроматина, называемую тельцем Барра, иначе называемую половым хроматином. Тельце Барра встречается только в ядрах клеток самок. У интерсексов с синдромом Клайнфельтера при мужском фенотипе в ядре также содержится тельце Барра, что является характерным отличием их от нормальных самцов и отличительным диагностическим признаком.

После инактивации одной из Х-хромосом соматические клетки самки при делении будут производить себе подобные, т. е. потомки клетки, имеющей активную материнскую хромосому, также будут иметь материнскую Х-хромосому, а потомки клетки, несущей активную отцовскую, будут иметь последнюю. В случае, если эти хромосомы отличаются по составу генов, возникает так называемый мозаицизм. Наглядным примером этого служит черепаховая окраска кошек.

Геномные мутации характеризуются изменением числа хромосом. У человека известны полиплоидия (в том числе тетраплоидия и триплоидия) и анеуплоидия.

Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (Зn, 4n, 5n и т.д.). Причины: двойное оплодотворение и отсутствие первого мейотического деления. У человека полиплоидия, а также большинство анеуплоидий приводят к формированию леталей.

Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, т.е. не кратное гаплоидному (2n+1, 2n-1 и т.д.). Механизмы возникновения: нерасхождение хромосом (хромосомы в анафазе отходят к одному полюсу, при этом на каждую гамету с одной лишней хромосомой приходится другая — без одной хромосомы) и «анафазное отставание» (в анафазе одна из передвигаемых хромосом отстаёт от всех других).

Трисомия — наличие трёх гомологичных хромосом в кариотипе (например, по 21-й паре, что приводит к развитию синдрома Дауна; по 18-й паре — синдрома Эдвардса; по 13-й паре — синдрома Патау).

Моносомия — наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная совместимая с жизнью моносомия у человека — по хромосоме X — приводит к развитию синдрома Шерешевского—Тернера (45,Х0).

 

Нерасхождение хромосом — нарушение процесса мейоза или митоза, заключающееся в отхождении гомологичных хромосом или хроматид во время анафазы к одному и тому же полюсу; может служить причиной хромосомных аберраций и геномных мутаций.

Мутации, затрагивающие половые клетки (генеративные мутации), проявляются в следующем поколении. Мутации соматических клеток проявляются в тех органах, которые включают измененные клетки. У животных соматические мутации не передаются по наследству, поскольку из соматических клеток новый организм не возникает. У растений, размножающихся вегетативно, соматические мутации могут сохраняться.

Антимутационные механизмы обеспечивают обнаружение, устранение или подавление активности онкогенов. Реализуются антимутационные механизмы при участии онкосупрессоров и систем репарации ДНК.

Антимутационные механизмы: речь идет об особенностях функционирования ДНК — полимеразы, отбирающей требуемые нуклеотиды в процессе репликации ДНК, а также осуществляющей самокоррекцию при образовании новой цепи ДНК наряду с редактирующей экдонуклеазой.

Фактором защиты против неблагоприятных последствий генных мутаций служит парность хромосом в диплоидном кариотипе соматических клеток эукариот. Парность аллейных генов препятствует фенотипическому проявлению мутаций, если они имеют рецессивный характер.

В снижение вредных последствий генных мутаций вносит явление экстракопирование генов, кодирующих жизненно важные макромолекулы. Пример, гены рРНК, тРНК, гистоновых белков, без которых жизнедеятельность любой клетки невозможна.

Перечисленные механизмы способствуют сохранению отобранных в ходе эволюции генов и одновременно накоплению в генофонде популяции различных ей аллелей, формируя резерв наследственной изменчивости.

ВОПРОС45

Эволюция гено­ма. Роль амплификации генов, хромосомных перестроек, полиплоидизации, подвижных генетических элементов, горизонтального переноса ин­формации в эволюции генома. Секвенирование генома. Значение геном­ного уровня организации наследственного материала.

1.2 Эволюция прокариотического генома

По мере совершенствования и повышения надежности главных механизмов потока информации значение избыточной ДНК в повышении выживаемости организмов снижалась. В такой ситуаций одним из возможных направлений изменения генома было уменьшение его размеров за счет утраты некодирующих нуклеотидных последовательностей. Именно так можно представить эволюционный путь, пройденный геномом современных прокариот. Одновременно в качестве механизмов, поддерживающих выживаемость этих форм, в историческом развитии закреплялось свойственное им короткое время генерации, т.е. интенсивное размножение и быстрая смена поколений (кишечная палочка делится каждые 20 мин). Перечисленные особенности хорошо сочетаются с гаплоидностью прокариот, что приводит к воспроизведению в фенотипе любой мутации.

Экспрессия 95% ДНК, относительно малые размеры генома, гаплоидность, проявление в фенотипе практически каждой мутации в сочетании с коротким временем генерации обусловливают высокую приспособленность. Вместе с тем для прокариотического типа организации не свойственны обширные и разнообразные изменения структуры. Вследствие этого описанное направление эволюции, обеспечивая высокую способность к выживанию (прокариоты существуют на Земле около 3,5 млрд. лет), является тупиковым в плане прогрессивной эволюции живых существ. [1]

1.3 Эволюция эукариотического генома

В отличие от изменений прокариотического генома преобразования генома в эволюции эукариот связаны с нарастающим увеличением количества ДНК. Это увеличение наблюдается в процессе прогрессивной эволюции эукариот . На фоне такого увеличения большая часть ДНК является «молчащей», т.е. не кодирует аминокислот в белках или последовательностей нуклеотидов в рРНК и тРНК. Даже в пределах одного гена молчащие (интроны) и кодирующие (экзоны) участки могут перемежаться. В составе ДНК обнаруживаются высоко и умеренно повторяющиеся последовательности. Вся масса ДНК распределена между определенным числом специализированных структур -- хромосом. Хромосомы в отличие от нуклеоида прокариот имеют сложную химическую организацию. Эукариоты в большинстве случаев диплоидны. Время генерации у них значительно больше, чем у прокариот. Отмечаемые особенности, оформившиеся в ходе эволюции генома эукариот, допускают широкие структурные изменения и обеспечивают не только адаптивную (приспособительную), но и прогрессивную эволюцию.

Среди перечисленных выше моментов увеличение размеров генома в эволюции эукариот привлекает особое внимание. Этот процесс может осуществляться различными способами. Наиболее резко размер генома изменяется в результате полиплоидизации, которая достаточно широко распространена в природе. Она заключается в увеличении количества ДНК и хромосом, кратном гаплоидному. Достигаемое в результате состояние полиплоидии приводит к увеличению дозы всех генов и создает избыток «сырого» генетического материала, который впоследствии видоизменяется в результате мутаций и отбора.

По-видимому, в ходе эволюции в результате накопления мутаций и дивергенции нуклеотидных последовательностей полиплоидизация сопровождалась переходом к диплоидному состоянию. Само по себе увеличение дозы генов еще не означает достижения однозначно положительного биологического результата. Об этом свидетельствует развитие в эволюции эукариот механизмов компенсации возрастающей дозы генов в ходе их экспрессии путем сокращения времени жизни в клетках зрелой РНК. Так, у тетраплоидных карповых рыб в ответ на увеличение дозы генов рРНК в молекулах рРНК соматических клеток возникают скрытые внутренние разрывы, которые приводят к преждевременному их старению и сокращению содержания в цитоплазме.

Если бы увеличение объема генома происходило только в результате полиплоидизации, то в природе должно было бы наблюдаться скачкообразное изменение его размеров. На самом деле этот процесс демонстрирует плавное увеличение содержания ДНК в геноме. Это позволяет допустить возможность других механизмов, изменяющих его объем.

Действительно, некоторое значение в определении размера генома имеют хромосомные перестройки, сопровождающиеся изменением содержания ДНК в них, такие, как дупликации, делеции и транслокации. Они обусловливают повторение, утрату некоторых последовательностей в составе хромосомы или перенос их в другие хромосомы.

Важным механизмом увеличения объема генома является амплификация нуклеотидных последовательностей, которая заключается в образовании их копий, что приводит к возникновению повторяющихся участков ДНК. Особенностью генома эукариот является наличие таких повторов в большом количестве, свидетельствующее о существенном вкладе механизма амплификации в увеличение размеров наследственного материала. Амплифицированные последовательности образуют семейства, в которых они собраны вместе (тандемная организация) или же распределяются по разным хромосомам. Конкретные изменения, приводящие к амплификации, бывают различными. Появление тандемов повторяющихся последовательностей объясняется, например, неравным кроссинговером, вследствие которого возникают многократные дупликации отдельных участков ДНК. Возможна амплификация путем вырезания фрагмента с последующей его репликацией вне хромосомы и встраиванием копий в другие хромосомы. Предполагают также амплификацию, осуществляемую путем «обратной транскрипции» ДНК на РНК с участием фермента обратной транскриптазы с последующим встраиванием копий ДНК в различные локусы хромосом.

Во всех случаях амплификация некоторой последовательности приводит к возникновению в геноме более или менее многочисленных повторов и способствует некратному увеличению его объема. Наличие таких повторов в сочетании с мутационным процессом является предпосылкой дивергентной эволюции однотипных последовательностей в пределах семейства с соответствующим изменением свойств кодируемых белков или РНК.

Ярким примером эволюционной судьбы амплифицированных нуклеотидных последовательностей являются семейства глобиновых генов, широко распространенных в природе у видов разных уровней организации. У высших позвоночных известен ряд глобиновых генов, контролирующих синтез полипептидов гемоглобина. У человека в геноме имеется восемь активных глобиновых генов, образующих два семейства.

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! DJVU!

 

Разработка методов клонирования и определения последовательности

оснований (секвенирования) нуклеиновых кислот положила начало новому этапу

 развития молекулярной биологии. Знание первичной структуры участков

генома, выполняющих определенные функции, дало возможность эффективно

применить для их исследования целый арсенал новых методов генной инженерии.

Эти методы (направленный мутагенез, рекомбинация in vitro и др.)

позволяют модифицировать участки нуклеотидных последовательностей и

исследовать их функции на молекулярном уровне. С их помощью комбинируются

участки генетического материала и  создаются геномы с совершенно новыми

функциями.

Секвенирование нуклеиновых кислот в настоящее время стало рутинным

методом молекулярной биологии. Несомненно, в ближайшем будущем появятся еще

более совершенные автоматические секвенаторы,  что приведет к резкому

увеличению числа расшифрованных последовательностей.

Благодаря знанию генетического кода появилась возможность определять

участки нуклеотидных последовательностей, кодирующих потенциальные белки.

Этот источник и сегодня дает нам основную информацию о функциональном

строении нуклеотидной последовательности.

В настоящее время широко используются два основных варианта

секвенирования по Максаму — Гилберту. В первом из них реакции  химической

модификации ДНК проводят в растворе, а во втором ДНК предварительно

иммобилизуют на твердой фазе (например, ДЭАЭ-целлюлозе). Первый метод более

традиционен, его многочисленные модификации с успехом использовались для

секвенирования фрагментов ДНК различных размеров, в том числе

олигонуклеотидов. В то же время второй метод имеет ряд преимуществ. Он

менее трудоемок и занимает меньше времени, проще в освоении, позволяет

обойтись минимальным набором оборудования. В целом оба метода обеспечивают

получение вполне приемлемых результатов, а выбор одного из них определяется

конкретными условиями лаборатории.

Биологическое значение геномного уровня организации наследственного материала

Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни. На геномном уровне система сбалансированных по дозам и объединенных сложнейшими функциональными взаимосвязями генов представляет собой нечто большее, нежели простую совокупность отдельных единиц. Поэтому результатом функционирования генома является формирование фенотипа целостного организма. В связи с этим фенотип организма нельзя представлять как простую совокупность признаков и свойств, это организм во всем многообразии его характеристик на всем протяжении индивидуального развития. Таким образом, поддержание постоянства организации наследственного материала на геномном уровне имеет первостепенное значение для обеспечения нормального развития, организма и воспроизведения у особи в первую очередь видовых характеристик.

В то же время допустимость рекомбинации единиц наследственности в генотипах особей обусловливает генетическое разнообразие их, что имеет важное эволюционное значение. Мутационные изменения, реализующиеся на геномном уровне организации наследственного материала,— мутации регуляторных генов, обладающих широким плейотропным действием, количественные изменения доз генов, транслокации и транспозиции генетических единиц, влияющие на характер экспрессии генов, наконец, возможность включения в геном чужеродной информации при горизонтальном переносе нуклеотидных последовательностей между организмами разных видов, — оказываясь иногда эволюционно перспективными, вероятно, являются основной причиной ускорения темпов эволюционного процесса на отдельных этапах исторического развития живых форм на Земле.

 

ВОПРОС46










Последнее изменение этой страницы: 2018-04-12; просмотров: 548.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...