Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Содержание дисциплины. Основные разделы




Основные понятия управления. Функциональная схема и классификация систем автоматического управления. Принципы и законы автоматического управления. Математическое описание линейных систем управления. Преобразование Лапласа. Устойчивость, качество, точность и синтез линейных систем управления. Понятие и критерии устойчивости. Показатели качества систем. Методы синтеза по частотным характеристикам.

Дискретные системы и их описание. Релейные, цифровые и импульсные системы. Устойчивость, качество и синтез импульсных систем управления.

Нелинейные системы управления. Исследование систем на фазовой плоскости. Методы гармонической линеаризации. Критерии устойчивости нелинейных систем.

Многомерные линейные системы управления. Описание многомерных линейных динамических систем в пространстве состояний, моделирование, анализ и синтез многомерных систем управления.


Требования к уровню освоения содержания дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- способность демонстрировать базовые знания в области естественнонаучных дисциплин и готовностью использовать основные законы в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-2);

- способность использовать методы анализа и моделирования линейных и нелинейных электрических цепей постоянного и переменного тока (ПК-11);

- готовность понимать существо задач анализа и синтеза объектов в технической среде (ПК-41).

Обучающиеся должны освоить дисциплину на уровне, позволяющем им свободно ориентироваться в принципах действия, особенностях протекающих процессов, а также уравнениях и схемах, описывающих системы управления, строить теоретически и получать экспериментально их характеристики. Уровень освоения дисциплины должен позволять обучающимся решать задачи по расчету и проектированию, анализу устойчивости и моделированию современных систем управления.

В результате изучения дисциплины обучающиеся должны:

знать принцип действия современных систем управления и особенности протекающих в них процессов;

уметь использовать полученную в результате обучения теоретическую и практическую базу для получения математического описания объектов и систем в виде дифференциальных уравнений, структурных схем; построения их характеристик и моделирования;

уметь использовать полученные знания при решении практических задач по расчету, анализу устойчивости, качества, проектированию систем управления; получить навыки по испытаниям и эксплуатации систем управления.

Виды учебной работы: лекции, практические занятия, самостоятельная работа.

Изучение дисциплины заканчивается экзаменом.


Аннотация примерной программы дисциплины

“Теоретические основы электротехники” (Б.3.1.1)

Общая трудоемкость изучения дисциплины составляет 10 зачетных единицы (360 часов).

Цели и задачи дисциплины

Дать теоретическую базу для изучения комплекса специальных электротехнических дисциплин.

Структура дисциплины (распределение трудоемкости по отдельным видам аудиторных учебных занятий и самостоятельной работы): лекции 2/72, лаборат. зан., - 1/36, практич. зан. – 1/36, самостоятельная работа 4/144час.

Содержание дисциплины. Основные разделы

Физические основы электротехники. Теория цепей. Линейные цепи постоянного тока. Линейные цепи синусоидального тока. Несинусоидальные токи в линейных цепях. Трехфазные цепи. Переходные процессы в линейных цепях. Нелинейные цепи постоянного тока. Нелинейные цепи переменного тока. Переходные процессы в нелинейных цепях. Магнитные цепи. Четырехполюсники. Фильтры. Установившиеся процессы в цепях с распределенными параметрами. Переходные процессы в цепях с распределенными параметрами. Основы синтеза электрических цепей. Понятие о диагностике электрических цепей. Теория электромагнитного поля. Электростатическое поле. Электрическое поле постоянных токов. Магнитное поле при постоянных магнитных потоках. Электромагнитное поле.

Требования к уровню усвоения дисциплин

Процесс изучения дисциплины направлен на формирование следующих компетенций:

– способность использовать методы анализа и моделирования линейных и нелинейных электрических цепей постоянного и переменного тока (ПК-11);

– способность к дальнейшему обучению на втором уровне высшего профессионального образования, получению знаний в рамках одного из конкретных профилей в области научных исследований и педагогической деятельности (ПК-33);

– готовность понимать существо задач анализа и синтеза объектов в технической среде (ПК-41).

Уровень усвоения должен быть достаточен для успешного изучения теоретических положений специальных электротехнических дисциплин и для выполнения необходимых расчетных заданий.

В результате изучения дисциплины студент должен:

знать теоретические основы электротехники: основные понятия и законы электромагнитного поля и теории электрических и магнитных цепей; методы анализа

цепей постоянного и переменного токов в стационарных и переходных режимах;

уметь: использовать законы и методы при изучении специальных электротехнических дисциплин;

владеть: методами расчета переходных и установившихся процессов в линейных и нелинейных электрических цепях, навыками решения задач и проведения лабораторных экспериментов по теории электрических цепей и электромагнитного поля.

Виды учебной работы: лекции, практические занятия, лабораторные занятия, самостоятельная работа.

Изучение дисциплины заканчивается экзаменами.

 

Аннотация примерной программы дисциплины

 “Электрические машины” (Б.3.1.2)

Общая трудоемкость изучения дисциплины составляет 10 зачетных единицы (360 часов).

Цель и задачи дисциплины

Основной целью дисциплины является формирование у студентов теоретической

базы по современным электромеханическим преобразователям энергии, которая позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности, связанной с проектированием, испытаниями и эксплуатацией электрических машин.

Для достижения поставленной цели необходимо научить студентов:

- классифицировать электрические машины и описывать сущность происходящего в них электромеханического преобразования энергии;

- самостоятельно проводить расчеты по определению параметров и характеристик электрических машин;

- проводить элементарные испытания электрических машин.

Структура дисциплины (распределение трудоемкости по отдельным видам аудиторных учебных занятий и самостоятельной работы): лекции 2/72, лаборат. зан., - 1/36, практич. зан. – 1/36, самостоятельная работа 4/144час.










Последнее изменение этой страницы: 2018-06-01; просмотров: 201.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...