Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Другие характеристики центра группирования случайной величины




 

1. Среднегеометрическое случайной величины Х: G(Х) = eM(ln Х).

Пусть Х – дискретная случайная величина, имеющая равномерное распределение.

, тогда

– среднее геометрическое.

2. Среднее гармоническое: .

Используется в экономике в индексных расчетах.

 

3. Медиана: Me(x) – квантиль xp, соответствующая вероятности p = 0,5.

Точка хр, являющаяся решением уравнения F(xp) = р, называется квантилью распределения. Медиана используется в качестве характеристики среднего, если случайная величина измерена в порядковой шкале.

4.Мода: M0(x) – это значение случайной величины, соответствующей максимальной вероятности pi, если X – дискретная величина. Используется для оценки среднего величин, измеренных в номинальной шкале.

Если Х – непрерывная случайная величина, то мода – точка локального максимума плотности распределения.

Если плотность одномодального распределения непрерывной случайной величины симметрична относительно некоторой прямой х = а, то МХ = Ме(х) = М0(х) = а.

Характеристики вариации случайной величины

 Характеристики вариации дают представления о степени отклонения случайной величины от центра группирования. Одной из характеристик вариации является среднее модуля отклонения случайной величины от своего математического ожидания. Для дискретной случайной величины

,

для непрерывных

.

Данную характеристику используют редко, так как выражение задается разными функциями на разных участках. Этого недостатка лишены дисперсия и среднеквадратическое отклонение.

Определение 1.Дисперсией случайной величины X называют число, равное математическому ожиданию квадрата отклонения случайной величины от её математического ожидания:

                                  .                                                        (1)

Если Х – непрерывная, то .                                         (2)

Если Х – дискретная, то  .                                                (3)

 

Формулы (2) и (3) следуют из определения дисперсии и теорем 1 и 2 лекции 13. Часто пользуются другой формулой

 

.                             (4)

Доказательство.

 

Определение 2. Средним квадратическим отклонением случайной величины называется квадратный корень из дисперсии: .

Пример1. Пусть Х – погрешность регистрации веса при взвешивании на весах с ценой деления 1 кг. Y – погрешность с ценой деления 2 кг. Найти DX, DY, σx, σy.

Будем считать, что погрешности Х и Y равномерно распределены соответственно на интервалах (–0,5; 0,5) и (–1; 1), .

Тогда

Пользуясь выведенной формулой, получим – ; ; ; .

По условию задачи один из весов вдвое точнее других, а дисперсии отличаются в четыре раза, в то время как среднеквадратические отклонения отличаются в два раза. Таким образом, среднеквадратическое отклонение может служить мерой точности приборов. Заметим, что единица измерения дисперсии – кг2, а единица измерения среднеквадратического отклонения – кг, т.е. среднеквадратическое отклонение измеряется в тех же величинах, что и исходная величина.

Свойства дисперсии

1.Дисперсия постоянной C равна 0, DC = 0, С = const.

Доказательство. DC = M(С MC)2 = М(С С) = 0.

 

2. D(CX) = С2DX.

Доказательство. D(CX) = M(CX)2M2(CX) = C2MX2C2(MX)2 = C2(MX2M2X) = С2DX.

 

3. Если X и Yнезависимые случайные величины, то

 

Доказательство.

4. Если Х1, Х2, … не зависимы, то .

Это свойство можно доказать методом индукции, используя свойство 3.

 

5. .

Доказательство. D(X – Y) = DX + D(–Y) = DX + (–1)2D(Y) = DX + D(Y).

 

6.

Доказательство. D(C+X) = M(X+C–M(X+C))2 = M(X+C–MX–MC)2 = M(X+C–MX–C)2 = M(X–MX)2 = DX.

Пусть  – независимые случайные величины, причем , .

Составим новую случайную величину , найдем математическое ожидание и дисперсию Y.

; .

То есть при n®¥ математическое ожидание среднего арифметического n независимых одинаково распределенных случайных величин остается неизменным, равным математическому ожиданию а, в то время как дисперсия стремится к нулю.

Это свойство статистической устойчивости среднего арифметического лежит в основе закона больших чисел.

 










Последнее изменение этой страницы: 2018-05-27; просмотров: 162.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...