Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Температурное поле в зоне формирования соединения




А. С. Гельман для исследования температурных полей в зоне сварки, по-видимому, первым применил решение дифференциальных уравнений распределения потенциалов и теплопроводности, которые осуществил численным методом, а точнее — методом конечных разностей. Это позволило ему при решении поставленных задач учесть изменение в процессе КТС теплофизических характеристик металла, геометрических параметров соединений, а также влияние энергетического и силового воздействия на зону сварки и скрытую теплоту плавления металла в ядре.

Эту методику, которая заключается в совместном решении дифференциальных уравнений распределения потенциалов и теплопроводности, в дальнейшем с уточнением граничных условий стали широко использовать при решении различных задач технологии точечной сварки методом конечных разностей и методом конечных элементов, как отечественные, так и зарубежные исследователи.

При исследованиях тепловых процессов в зоне формирования точечного сварного соединения в большинстве случаев осуществляют совместное решение дифференциального уравнения, описывающего электрическое поле:

,                  (2.6)

где φ — потенциал в рассматриваемой точке; z и r — цилиндрические координаты пространства;

и дифференциального уравнения теплопроводности Фурье, которое при условии, что теплоемкость и плотность металла не зависят от температуры, записывают чаще всего в следующем виде:

,        (2.7)

где сm, γ, λ и ρ — соответственно, массовая теплоемкость, плотность, коэффициенты теплопроводности и удельного электрического сопротивления металла; j — плотность тока.

Сведения о температуре металла в зоне сварки, полученные расчетом по данным методикам, по-видимому, являются наиболее близкими к истинным ее значениям при конкретных условиях сварки. Так, расчетные изотермы температуры плавления (рис. 2.11) по конфигурации и геометрическому положению весьма близки к границам ядра расплавленного металла, экспериментально определяемым на различных стадиях его   формирования.

Рис. 2.11. Изменение температурного поля в процессе сварки АМг6, 2 + 2 мм:

аt = 0,1 с; бtСВ = 0,16 с;

 

Тепловой баланс в зоне сварки и расчет сварочного тока

Теплоту QЭЭ, которая должна выделиться в зоне формирования соединения для получения ядра заданных размеров, можно рассчитать через теплосодержание металла в ней к концу процесса сварки и количество теплоты, отведенное из зоны сварки в процессе формирования соединения. Для этого используют условные схемы теплопередачи в зоне сварки и распределения в ней температуры (рис. 2.12).

Рис. 2.12. Схемы теплопередачи в зоне сварки и распределения в ней температуры для расчета теплового баланса

 

В данной методике расчета допускают, что вся теплота QЭЭ выделяется в цилиндре, диаметр которого равен диаметру dЭ контакта электрод-деталь. Выделившуюся теплоту QЭЭ условно разделяют на теплоту Q1, которая расходуется на нагрев и плавление металла в выделенном цилиндре (Q1 ≈ 20...30 % от QЭЭ, а также на теплоту Q2, которая отводится в окружающий его металл деталей (Q2 ≈ 20 % от QЭЭ) и теплоту Q3, которая отводится в электроды (Q3 > 50 % от QЭЭ). Относительно очень небольшая часть теплоты QЭЭ отводится с поверхностей деталей радиационной Q4 и конвективной Q5 теплоотдачей. Такое распределение теплоты QЭЭ описывается так называемым «уравнением теплового баланса», которое было предложено еще в 30-х годах прошлого века и используется до настоящего времени в инженерных методиках расчетного определения силы сварочного тока:

.                          (2.8)

При расчетах по уравнению теплового баланса (2.8) общего количества теплоты QЭЭ, требуемой для формирования соединения заданных размеров, радиационной Q4 и конвективной Q5 теплоотдачей с поверхностей деталей обычно пренебрегают из-за их относительно малых величин.

Для расчета теплоты в зоне сварки делают ряд допущений. Так, принимают, что средняя температура в цилиндре, диаметром dЭ, который приближенно равен диаметру ядра, и высотой, равной суммарной толщине двух деталей 2s, принимается равной температуре плавления ТПЛ. Считается, что заметное повышение температуры металла в деталях из-за отвода в них теплоты Q2 наблюдается на расстоянии х2 от границы цилиндра, которое определяется временем сварки tСВ и коэффициентом температуропроводности металла аМ:

.

При этом принимается, что средняя температура кольца шириной х2 вокруг цилиндра диаметром dЭ, равна ТПЛ / 4.

Определение потерь тепла в электроды производится аналогичным образом. При этом принимается, что за счет тепла Q3 нагревается до средней температуры, равной ТПЛ / 8, участок электрода длиной

,

где аЭ — коэффициент температуропроводности металла электродов.

С учетом сказанного сокращенное уравнение теплового баланса

в развернутом виде описывают обычно следующим выражением:

,  (2.9)

где γМ и γЭ — плотность металла свариваемых деталей и электродов; сМ и сЭ — теплоемкость металла свариваемых деталей и электродов; k1 — коэффициент, который учитывает неравномерность распределения температуры в кольце; k2 — коэффициент, учитывающий влияние на теплоотвод формы рабочей части электродов.

С увеличением времени точечной сварки доля теплоты, отводимой в окружающий металл и электроды, всегда увеличивается, т. е. с увеличением времени сварки всегда уменьшается КПД процесса нагрева.

Количество теплоты QЭЭ, которое требуется для образования точечного сварного соединения заданных размеров, используют в основном для приближенного определения силы сварочного тока IСВ по зависимости, обеспечивающего выделение этой теплоты.

Расчет сварочного тока.  Сварочный ток рассчитывают по закону Джоуля – Ленца. Зависимость (2.1), при условии осреднения за цикл сварки значений электрического сопротивления в зоне сварки, преобразуют к следующему виду:

,                                 (2.10)

где QЭЭ — общее количество теплоты, затрачиваемой на образование соединения; mr — коэффициент, учитывающий изменение rЭЭ в процессе сварки.

Для низкоуглеродистых сталей mr ≈ 1, для алюминиевых и магниевых сплавов mr ≈ 1,15, коррозионно-стойких сталей mr ≈ 1,2, сплавов титана mr ≈ 1,4.

Общее количество теплоты, затрачиваемой на образование соединения QЭЭ определяется из уравнения теплового баланса по зависимости (2.9), а конечное значение электрического сопротивления деталей — по зависимости (2.5).

Пример. Определить силу тока при точечной сварке листов из низкоуглеродистой стали толщиной 4 мм электродами с диаметром рабочей поверхности 12 мм и временем сварки 1 с. Температура ликвидуса стали 1500 °С, теплоемкость с для стали 0,67 КДж/(кг×К), меди – 0,38 КДж/(кг×К), плотность γ для стали равна 7800 кг/м3, меди – 8900 кг/м3, коэффициент температуропроводности ам для стали равен 9×10-6 м2/с, меди – 8×10-5 м2/с. Электрическое сопротивление деталей к концу процесса сварки rДК ≈ 58 мкОм.

Значения экспериментальных коэффициентов примем: k1 = 0,8;
k2 = 1,5. Вычислим значения x2 и x3 :

, .

Вычислим значение QЭЭ по зависимости (2.9):

 кДж.

Тогда искомая сила сварочного тока по зависимости (2.10) будет равна:

 кА.










Последнее изменение этой страницы: 2018-05-10; просмотров: 240.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...