Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Смешанное соединение резистивных элементов




 

При наличии в цепи только одного источника ЭДС внешнюю по отношению к источнику часть электрической цепи можно в большинстве случаев рассматривать как смешанное (последовательно-параллельное) соединение элементов.

В приведенной схеме несколько резистивных элементов, которые соединены параллельно.

Расчет смешанного соединения нужно начинать с определения эквивалентной проводимости g каждого параллельно соединенного резистивного элемента, то есть подключенных к одной и той же паре узлов. В схеме

;

эквивалентная проводимость равна:

.

После замены параллельного соединения резистивных элементов эквивалентным резистивным элементом с сопротивлением  получается эквивалентная схема с последовательным соединением двух резистивных элементов r1 и rэ.

Ток в неразветвленной части цепи равен:

.

Чтобы определить токи в параллельных ветвях (токи I2, I3, I4), нужно сначала вычислить напряжение между узлами a и b:

.

И далее, по закону Ома определяем токи в ветвях:

.

Таким образом получены значения расчетных величин заданной цепи.

 

Метод двух узлов

 

Часто исследуемая электрическая цепь содержит только два узла или легко может быть преобразована в подобную цепь. Наиболее простым методом расчета в этом случае является метод двух узлов (узлового напряжения).

Так как ветви между узлами a и b соединены параллельно, то разность потенциалов между этими узлами можно выразить через ЭДС Ek, ток Ik и сопротивление rk. По обобщенному закону Ома ток в k-ой ветви равен:

,

откуда

,

где узловое напряжение цепи.

На основании этих выражений можно рассчитать ток в k-ой ветви:

,                   (1)

где  – проводимость k-ой ветви.

В приведенном примере принято, что все ЭДС направлены к одному из узлов цепи (к узлу а) и положительное направление каждого тока совпадает с направлением ЭДС в ветви. В действительности некоторые ЭДС могут быть направлены к узлу b. В этом случае при расчете токов в ветвях с теми же положительными направлениями (к узлу а) значения ЭДС, действующих к узлу b, должны быть записаны со знаком минус.

По первому закону Кирхгофа алгебраическая сумма токов в узле равна нулю:

.

Тогда из (1) имеем:

.

Отсюда видно, что узловое напряжение  может быть определено через параметры элементов цепи:

,

здесь со знаком плюс записываются ЭДС, действующие к узлу а.

Зная узловое напряжение , по формуле (1) можно рассчитать ток в любой ветви.

Метод контурных токов

 

Этот метод может быть применен для расчета любой линейной цепи. Его применение позволяет уменьшить число совместно решаемых уравнений по сравнению с числом уравнений, составляемых по законам Ома и Кирхгофа.

Для расчета методом контурных токов в сложной электрической цепи независимые контуры выбираются так же как и при составлении уравнений по второму закону Кирхгофа, например, рис. б). Затем в каждом контуре произвольно выбирается положительное направление контурного тока (один и тот же ток, протекающий во всех ветвях контура). Расчетную величину – контурный ток обозначим по номеру контура с двойным индексом, например, Ikk. Токи в общих для двух или более контуров ветвях определяются на основании первого закона Кирхгофа как алгебраические суммы соответствующих контурных токов.

Алгебраическая сумма ЭДС всех ветвей, входящих в каждый из выбранных независимых контуров, называется контурной ЭДС Ekk (с двойным индексом по номеру контура), то есть для любого k-го контура

.

Арифметическая сумма сопротивлений всех элементов, входящих в каждый из выбранных контуров, называется собственным контурным сопротивлением rkk (с двойным индексом номера контура), то есть для k-го контура

.

Арифметическая сумма сопротивлений элементов, находящихся в общих ветвях двух контуров m и l, называется общим сопротивлением этих контуров, причем, очевидно,

.

Для контурных токов, как и для токов в ветвях, должен выполняться второй закон Кирхгофа. Составим систему контурных уравнений для контурных токов по второму закону Кирхгофа для электрической цепи, у которой n независимых контуров:

Система уравнений является математической формулировкой метода контурных токов. Так как число контурных токов всегда меньше числа токов в ветвях, то применение этого метода уменьшает число неизвестных величин в решаемой системе уравнений.

Решение системы уравнений может быть записано для контурных токов в общей форме с введением определителей:

,

где D – определитель системы уравнений, рассчитанный по матрице коэффициентов rkk, а Dkp (p = 1, 2, ..., n) – алгебраические дополнения, получаемые из определителя D посредством вычеркивания k-ой строки и p-го столбца и умножения полученного определителя на (-1)k+p.

Составим уравнения для приведенной схемы. Будем считать, что значения всех ЭДС и сопротивлений элементов заданы. Элементы каждой ветви и токи в ветвях обозначим соответствующими индексами. Составим контурные уравнения, предварительно произвольно выбрав положительные направления обхода контуров.

Для первого контура:

Для второго контура:

Для третьего контура:

Вычислив значения контурных токов , определим по первому закону Кирхгофа токи во всех ветвях электрической цепи:

.

 










Последнее изменение этой страницы: 2018-05-10; просмотров: 248.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...