Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основные параметры и характеристики ОУ




Основным параметром ОУ коэффициент усиления по напряжению без обратной связи Ku ОУ, называемый также полным коэффициентом усиления по напряжению. В области НЧ и СЧ он иногда обозначается Ku ОУ0 и может достигать нескольких десятков и сотен тысяч.

Важными параметрами ОУ являются его точностные параметры, определяемые входным дифференциальным каскадом. Поскольку точностные параметры ДУ были рассмотрены в подразделе 5.5, то здесь ограничимся их перечислением:

◆ напряжение смещения нуля Uсм;

◆ температурная чувствительность напряжения смещения нуля dUсм/dT;

◆ ток смещения ΔIвх;

◆ средний входной ток Iвх ср.

Входные и выходные цепи ОУ представляются входным RвхОУ и выходным RвыхОУ сопротивлениями, приводимыми для ОУ без цепей ООС. Для выходной цепи даются также такие параметры, как максимальный выходной ток IвыхОУ и минимальное сопротивление нагрузки Rн min, а иногда и максимальная емкость нагрузки. Входная цепь ОУ может включать емкость между входами и общей шиной. Упрощенные эквивалентные схемы входной и выходной цепи ОУ представлены на рисунке 6.4.

Рисунок 6.4. Простая линейная макромодель ОУ

Среди параметров ОУ следует отметить КОСС и коэффициент ослабления влияния нестабильности источника питания КОВНП=20lg·(ΔEUвх). Оба этих параметра в современных ОУ имеют свои значения в пределах (60…120)дБ.

К энергетическим параметрам ОУ относятся напряжение источников питания ±E, ток потребления (покоя) IП и потребляемая мощность. Как правило, IП составляет десятые доли — десятки миллиампер, а потребляемая мощность, однозначно определяемая IП, единицы — десятки милливатт.

К максимально допустимым параметрам ОУ относятся:

◆ максимально возможное (неискаженное) выходное напряжение сигнала Uвых max (обычно чуть меньше Е);

◆ максимально допустимая мощность рассеивания;

◆ рабочий диапазон температур;

◆ максимальное напряжение питания;

◆ максимальное входное дифференциальное напряжение и др.

К частотным параметрам относится абсолютная граничная частота или частота единичного усиления fT (F1), т.е. частота, на которой Ku ОУ=1. Иногда используется понятие скорости нарастания и времени установления выходного напряжения, определяемые по реакции ОУ на воздействие скачка напряжения на его входе. Для некоторых ОУ приводятся также дополнительные параметры, отражающие специфическую область их применения.

Амплитудные (передаточные) характеристики ОУ представлены на рисунке 6.5 в виде двух зависимостей Uвых=f(Uвх) для инвертирующего и не инвертирующего входов.

Когда на обоих входах ОУ Uвх=0, то на выходе будет присутствовать напряжение ошибки Uош, определяемое точностными параметрами ОУ (на рисунке 6.5 Uош не показано ввиду его малости).

Рисунок 6.5. АХ ОУ

 

Частотные свойства ОУ представляются его АЧХ, выполненной в логарифмическом масштабе, Ku ОУ=φ(lg f). Такая АЧХ называется логарифмической (ЛАЧХ), ее типовой вид приведен на рисунке 6.6 (для ОУ К140УД10).

Рисунок 6.6. ЛАЧХ и ЛФЧХ ОУ К140УД10

Частотную зависимость Ku ОУ можно представить в виде:

Здесь τв постоянная времени ОУ, которая при Mв=3 дБ определяет частоту сопряжения (среза) ОУ (см. рисунок 6.6);

ωв = 1/τв = 2πfв.

Заменив в выражении для Ku ОУ τв на 1/ωв, получим запись ЛАЧХ:

На НЧ и СЧ Ku ОУ=20lgKu ОУ0, т.е. ЛАЧХ представляет собой прямую, параллельную оси частот. С некоторым приближением можем считать, что в области ВЧ спад Ku ОУ происходит со скоростью 20дБ на декаду(6дБ на октаву). Тогда при ω>>ωв можно упростить выражение для ЛАЧХ:

Ku ОУ = 20lgKu ОУ0 – 20lg(ω/ωв).

Таким образом, ЛАЧХ в области ВЧ представляется прямой линией с наклоном к оси частот 20дБ/дек. Точка пересечения рассмотренных прямых, представляющих ЛАЧХ, соответствует частоте сопряжения ωв (fв). Разница между реальной ЛАЧХ и идеальной на частоте fв составляет порядка 3дБ (см. рисунок 6.6), однако для удобства анализа с этим мирятся, и такие графики принято называть диаграммами Боде.

Следует заметить, что скорость спада ЛАЧХ 20дБ/дек характерна для скорректированных ОУ с внешней или внутренней коррекцией, основные принципы которой будут рассмотрены ниже.

Для скорректированного ОУ можно рассчитать Ku ОУ на любой частоте f как Ku ОУ=fT/f, а Ku ОУ0=fT/fв.

На рисунке 6.6 представлена также логарифмическая ФЧХ (ЛФЧХ), представляющая собой зависимость фазового сдвига j выходного сигнала относительно входного от частоты. Реальная ЛФЧХ отличается от представленной не более чем на 6°. Отметим, что и для реального ОУ j=45° на частоте fв, а на частоте fT — 90°. Таким образом, собственный фазовый сдвиг рабочего сигнала в скорректированном ОУ в области ВЧ может достигнуть 90°.

Рассмотренные выше параметры и характеристики ОУ описывают его при отсутствии цепей ООС. Однако, как отмечалось, ОУ практически всегда используется с цепями ООС, которые существенно влияют на все его показатели.

 

 

22. Инвертирующий и неинвертирующий усилители на ОУ.

Инвертирующий усилитель

Инвертирующий усилитель изображен на (рис. 1.12)

Рис. 1.12

Входной и выходной сигналы инвертирующего усилителя сдвинуты по фазе на 180°. Изменение знака выходного сигнала относительно входного создается введением по инвертирующему входу ОУ с помощью резистора Rос параллельной обратной связи по напряжению. Неинвертирующий вход связан с общей точкой входа и выхода схемы (заземляется). Входной сигнал подается через резистор R1 на инвертирующий вход ОУ.

Благодаря высокому коэффициенту усиления усилителя без ОС для изменения выходного напряжения усилителя во всем рабочем диапазоне достаточно весьма малого значения Uз (обычно Uвых.max< Uи.п.).

Если на схему подать положительное входное напряжение Uвх, то Uq станет положительным и выходной потенциал начнет снижаться. Выходное напряжение будет меняться в отрицательном направлении до тех пор, пока напряжение на инвертирующем входе в точке А не станет почти нулевым: Uq = Uвых / Kоу >> 0.

Таким образом, R1 и Rос действует как делитель напряжения между Uвых и Uвх и Uвых / Uвх = Rос / R1.

Точка А называется потенциально заземленной, поскольку потенциал почти равен потенциалу Земли, так как Uq>> 0.

Если принять Rвх.оу и входной ток ОУ Iоу = 0, то

IR1 = (Uвх - Uq) / R1 и IR1 = - (Uвых - Uq) / Rос,

следовательно

(Uвх - Uq) / R1 = - (Uвых - Uq) / Rос.

Полагая,что Uq>> 0 и К , запишем

Uвх/R1 = Uвых/Rос, Кос = Uвых/Uвх = - Rос/R1

Таким образом, коэффициент усиления инвертирующего каскада ОУ зависит только от параметров внешней цепи и не зависит от коэффициента усиления самого ОУ. Обычно R1 выбирается так, чтобы не нагружать источник напряжения Uвх, а Rос должно быть достаточно большим, чтобы чрезмерно не нагружать операционный усилитель.

Если выбрать Rос = R1, когда Кuос = - 1, то схема (рис. 1.12) получит свойства инвертирующего повторителя напряжения(инвертор сигнала).

Поскольку Uq 0, входное сопротивление схемы Rвх = R1, выходное сопротивление усилителя:

Rвых = ((Rвых оу (1+Rос/R1)) / Кu,оу

При Кu,оу , Rвых 0.

 










Последнее изменение этой страницы: 2018-05-10; просмотров: 304.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...