Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Структурные связи в грунтах




Краткая характеристика основных классов грунтов

 

Грунты – любые горные породы, используемые как материал, основание сооружения или среда его размещения. При строительстве сооружения требуется знание свойств взаимодействующих с ним грунтов. По строительным свойствам (сжимаемость, прочность и др.) грунты делят на: скальные, полускальные, крупнообломочные, песчаные, пылевато-глинистые и особые.

Скальные представлены магматическими, метаморфическими или осадочными породами с прочными жесткими связями между минеральными зернами. Они обычно представляют собой прочное и надежное основание.

Однако из-за выветривания верхний слой скалы иногда представляет собой подобие сухой кладки. При строительстве капитального сооружения может потребоваться его удаление. Некоторые породы снижают прочность при водонасыщении или даже растворяются в воде – выщелачиваются.

Особенно это характерно для полускальных пород (вулканические туфы, некоторые известняки, мергели, глинистые сланцы, гипс и др.) с прочностью на сжатие меньше 5 МПа. Они подвержены также быстрому выветриванию в обнажениях выемок, котлованов, выработок.

Крупнообломочные и песчаные грунты – продукты физического выветривания скальных пород. В крупнообломочных более 50% составляют обломки (частицы) размером > 2 мм; в песчаных их менее 50%. Содержание глинистой фракции для песчаных грунтов должно быть менее 3%.

Свойства указанных грунтов определяются минералогическим и гранулометрическим составами и состоянием по плотности сложения. Для некоторых разновидностей (мелкие и пылеватые пески) имеет значение также степень заполнения пор водой. Плотные крупнообломочные и песчаные грунты являются обычно надежным основанием сооружений. Однако рыхлые пески интенсивно уплотняются при динамических воздействиях.

Пылевато-глинистые грунты – продукт физического и химического выветривания горных пород. В зависимости от содержания глинистой фракции их подразделяют на супеси (3…10%), суглинки (10…30%) и глины (> 30 %). Свойства этих грунтов определяются минералогическим и гранулометрическим составом и содержанием воды, т.е. влажностью. Для них характерны такие свойства, как способность принимать твердое, пластичное или текучее состояние в зависимости от влажности, набухание, размокание, липкость, усадка.

В группу особых выделяются илы, торфы, заторфированные грунты, просадочные лессы и лессовидные грунты, мерзлые и вечномерзлые, засоленные грунты и др.

Определяющим свойством грунтов этой группы является их структурная неустойчивость. Это способность структурных связей быстро разрушаться при некоторых воздействиях, нехарактерных для обычных условий формирования и существования таких грунтов. При этом основание получает большие по величине и быстро протекающие осадки, называемые просадками. Соответственно грунты этой группы характеризуются как просадочные.

Состав грунтов. Закон фильтрации. Структура и

структурные связи в грунтах

 

Наиболее сложными по своим свойствам являются дисперсные (раздробленные) грунты. Обычно они содержат три составные части (фазы) – минеральную (твердые частицы), жидкую (вода) и газообразную (воздух, водяной пар, другие газы). Мерзлые грунты содержат также лед. Полностью водонасыщенный грунт считают двухфазной системой (грунтовая масса).

В дисперсных грунтах выделяют прочносвязанную (гигроскопическая), рыхлосвязанную (пленочная) и свободную (гравитационная и капиллярная) воду. Связанная вода существенно влияет на свойства глинистых грунтов и практически отсутствует в песчаных. Перемещение пленочной воды называется миграцией. Гравитационная вода перемещается (фильтрует) во всех грунтах под действием разности напоров. Для большинства грунтов выполняется закон ламинарной фильтрации Дарси в виде

                                     ,                                               (1.1)

где J = H/ℓ - гидравлический градиент;

 Кф – коэффициент фильтрации .

Из (1.1) Кф - это скорость фильтрации при J =1.

В плотных глинистых грунтах фильтрация затрудняется оболочками связанной воды; считают, что фильтрация в них начинается лишь по достижении некоторого начального градиента напора Jn. Уравнение (1.1) при этом принимает вид: , где Jn – начальный градиент.

Значения Кф и Jn определяются экспериментально.

Капиллярная вода удерживается в порах грунта за счет сил поверхностного натяжения. Высота капиллярного поднятия в грунтах растет с дисперсностью, составляя от 3…5 см в крупных песках до нескольких метров в глинистых грунтах.

Под структурой понимаются размеры, форма, характер поверхности минеральных частиц грунта и характер связей между ними. Последние называются структурными связями и определяют прочность связных грунтов.

В пылевато-глинистых грунтах различают структурные связи:

1) Водно-коллоидные, зависящие от сил электромолекулярного взаимодействия между поверхностями твердых частиц и их водными оболочками. Эти связи пластичны и обратимы.

2) Кристаллизационные связи, возникающие вследствие кристаллизации на поверхности частиц различных соединений из поровых растров. Это связи хрупкого типа и они практически необратимы.

 

Лекция №2 Физико-механические свойства грунтов основания

В механике грунтов используются следующие основные физические характеристики, определяемые опытным путем:

– плотность грунта  , т/м3 ;                                                

– плотность частиц грунта  , т/м3 ;                                 

– влажность ,                                                                       

где m - масса в некотором объеме грунта V;

ms и Vs – масса и объем твердых частиц в некотором объеме грунта V;

mwи Vw – масса и объем воды в  некотором объеме грунта V.

По эти характеристикам рассчитывают производные показатели:

- плотность сухого грунта ; ;  

– пористость        ,                                                  

где – объем пор в рассматриваемом объеме грунта V;

– коэффициент пористости

                                        ;                   (1.2)

– степень влажности:      ,                                            

где – плотность воды.

В расчетах часто используются не плотности, а удельные веса, рассчитываемые умножением плотности на ускорение свободного падения. Соответственно имеем удельный вес грунта , частиц  и сухого грунта :

                        ; ; .                                   

Например, если , то .

Если принять объем грунта = 1 м3, то для него по смыслу пористости n – объем пор, а 1 – n = m – объем твердых частиц. Разрешая (1.2) относительно n, получаем:  .                                               

Тогда объем твердых частиц  

                                                                                    (1.3)

Грунт, залегающий ниже уровня подземных вод, испытывает взвешивающее действие воды. При этом вес твердых частиц уменьшается на вес вытесненной ими воды, т.е. на величину . Принимая m по (1.3), получаем:                         .                                

Для большинства грунтов значение  близко к 10 кН/м3.

Для глинистых грунтов наряду с влажностью важным является понятие консистенции, характеризующее степень подвижности грунта. Консистенция может быть твердой, пластичной и текучей. Влажности, соответствующие границам между этими состояниями, называются пределами пластичности или раскатывания WP (граница между твердым и пластичным состояниями) и текучести WL (между пластичным и текучим).

Разность этих пределов называется числом пластичности                                                  

Число пластичности тесно связано с содержанием в грунте глинистой фракции и поэтому используется в классификации:

JP ≤ 0,07 - супесь, 0,07 < JP ≤ 0,17 - суглинок; JP > 0,17 – глина.

Состояние грунта удобно характеризовать показателем текучести :

                                 .                                 (1.4)

Из (1.4) видно, что при  < < 0 и консистенция твердая; при  > > 1 и консистенция текучая. Для суглинков и глин изменение их свойств в интервале  очень существенно и для них в указанном интервале пластичной консистенции состояния детализируются:

< 0,25 – полутвердое; <0,5 – тугопластичное; <0,75 – мягкопластичное;   – текучепластичное.

Для супесей, у которых число пластичности мало, во всем интервале  остается одно название: супесь пластичная.

Для песчаных грунтов очень важно состояние по плотности сложения: плотное, средней плотности, рыхлое. В последнем состоянии грунт дает большие деформации, особенно при динамических воздействиях.

Имеющиеся опытные данные по отдельным разновидностям песчаных грунтов позволяют установить состояние по плотности с помощью табл. 1.1.

Более объективно плотность сложения по значению  можно установить, если данный грунт подвергнуть максимально рыхлой укладке и максимально плотной, определив соответственно  и . Тогда, зная  для естественного сложения, можно определить относительную плотность или индекс плотности

Таблица 1.1

Грунты

Плотность сложения при коэффициенте пористости

плотные средней плотности рыхлые
Пески гравелистые, крупные и средней крупности <0,55 От 0,55 до 0,70 включ. >0,70
Пески мелкие <0,60 От 0,60 до 0,75 включ. >0,75
Пески пылеватые <0,60 От 0,60 до 0,80 включ. >0,80

 

                                      .                                       (1.5)

При 0< – песок рыхлый; при 0,67<  – плотный и при 0,33< – средней плотности.

Наиболее надежно плотность устанавливается статическим или динамическим зондированием.

Для песчаных грунтов, особенно мелких и пылеватых, на строительные свойства влияет коэффициент водонасыщения . В зависимости от  пески разделяются на малой степени водонасыщения ( ), средней степени водонасыщения 0,5<  и насыщенные водой >0,8.

 По характеристикам физического состава и состояния можно определить условное расчетное сопротивление грунта , интегрально характеризующее строительные свойства грунта как основания.

Для песчаных грунтов достаточно знать полное наименование грунта и плотность (табл. 1.2), а для пылевато-глинистых – название, значения  и  (табл. 1.3).

Таблица 1.2










Последнее изменение этой страницы: 2018-05-10; просмотров: 366.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...