Студопедия

КАТЕГОРИИ:

АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теорема о взаимности реакций




Задана любая статически неопределимая стержневая система, например, однопролётная балка, защемлённая на левом конце и шарнирно опёртая на правом. В состоянии i этой балки угловой связи i заделки А зададим поворот по часовой стрелке на единицу (рис. 15.4,а), а в состоянии j – правой опорной связи j линейное перемещение вверх на единицу (рис. 15.4,б). Так как рассматриваемая система статически неопределима, то в её опорных связях, за исключением горизонтальной связи левой опоры А, от упомянутых выше кинематических воздействий возникнут реакции (см. п. 14.1 четырнадцатой лекции). Горизонтальная связь левой опоры А является абсолютно необходимой и в ней реакция от рассматриваемых смещений связей i и j будет равна нулю (НА = 0).

На рис. 15.4 в состояниях i и j показаны реакции в смещаемых связях, а именно: rii – реакция в i-й связи от её смещения на единицу, rjj – реакция в j-й связи от собственного смещения на единицу, rij – реакция в i-й угловой связи от перемещения j-й линейной связи на единицу, rji – реакция в j-й линейной связи от перемещения i-й угловой связи на единицу. К состояниям i и j применим теорему о взаимности возможных работ внешних сил (см. соотношение (15.3) п. 15.1):

Wext,ij = Wext,ji.

В нашем случае:

Wext,ij = rii × 0 + rji × 1, Wext,ji = rjj × 0 + rij × 1,

rji × 1 = rij × 1, или rij = rji .                 (15.5)

Работа реакций остальных связей заданного сооружения (на рис. 15.4 – реакция вертикальной связи левой опоры А), не получивших перемещений, в выражения для возможных работ Wext,ij и Wext,ji не войдёт.

Равенство (15.5) является математическим представлением теоремы о взаимности реакций: реакция rij в i-й связи от перемещения j-й связи на единицу равна реакции rji в j-й связи от смещения j-й связи на единицу.

Принцип взаимности реакций, вытекающей из теоремы Бетти как частный случай, справедлив не только для реакций опорных связей различного типа, но и для реакций внутренних связей (изгибающих моментов, поперечных и продольных сил).

Как и в теореме о взаимности перемещений (см. п. 15.2), в рассматриваемой здесь теореме о взаимности реакций речь идёт об удельных реакциях, т.е. реакциях, вызванных единичными смещениями связей. Размерность удельной реакции определяется как отношение размерности рассматриваемой реакции к размерности перемещения, вызвавшего эту реакцию. Для удельных реакций rij и rji, показанных на рис. 15.4, имеем:

[rij] =  = кН, [rji] =  = кН.

В строительной механике теорема о взаимности реакций известна как первая теорема английского физика Джона Рэлея (1842–1919). Она широко применяется в расчётах статически неопределимых систем методом перемещений.










Последнее изменение этой страницы: 2018-06-01; просмотров: 272.

stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда...