Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Теорема о взаимности перемещений
По-прежнему рассмотрим состояния i и j одного и того же сооружения (рис. 15.2). В состоянии i на него действует сила Fi = 1, а в состоянии j – сила Fj = 1. Зафиксируем возможные перемещения dij и dji, возникающие в состояниях i и j от единичных сил. Для состояний сооружения i и j применим теорему о взаимности возможных работ внешних сил (см. п. 15.1, соотношение (15.3)): 1 × dij = 1 × dji, или dij = dji. (15.4) Соотношение (15.4) выражает содержание теоремы о взаимности перемещений: перемещение по направлению линии действия i-й единичной обобщённой силы, вызванное j-й единичной обобщённой силой, равно перемещению по направлению линии действия j-й обобщённой силы от i-й единичной обобщённой силы. В строительной механике эта теорема известна как теорема английского физика и механика Джеймса Максвелла (1831–1879). Теорема о взаимности перемещений широко применяется в расчётах линейно деформируемых систем, в частности, в расчётах статически неопределимых систем методом сил, при построении линий влияния перемещений в стержневых сооружениях. Выше был рассмотрен случай, когда в состоянии i и j сооружения действуют единичные сосредоточенные силы (рис. 15.2), т.е. силы, имеющие одинаковую природу и одинаковую размерность. На рис. 15.3 рассмотрена ситуация, когда в состоянии i на сооружение действует сосредоточенная сила Fi = 1, а состоянии j – сосредоточенный момент Mj = 1. Здесь же показаны и возможные перемещения dij и dji, вызываемые упомянутыми силами Fi = 1 и Mj = 1. Кажущееся противоречие в размерностях перемещений dij и dji, равенство которых определено соотношением (15.4), отпадает, если мы примем во внимание, что каждое из этих перемещений является удельным перемещением, т.е. что оно вызывается обобщённой силой, имеющей не произвольное, а единичное значение. Таким образом, размерность какого-либо удельного перемещения есть отношение размерности рассматриваемого обобщённого перемещения к размерности обобщённой силы, вызвавшей это перемещение. В случае, рассмотренном на рис. 15.3, имеем: [dij] = = кН-1, [dji] = = кН-1, т.е. оба перемещения имеют одинаковую размерность. |
||
Последнее изменение этой страницы: 2018-06-01; просмотров: 281. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |