Студопедия КАТЕГОРИИ: АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Баланс реактивных мощностей
В электрической системе суммарная генерируемая реактивная мощность должна быть равна потребляемой реактивной мощности. В отличие от активной мощности, источниками которой являются только генераторы электростанций, реактивная мощность генерируется как ими, так и другими источниками, к которым относятся воздушные и кабельные линии разных напряжений Qn, а также установленные в сетях источники реактивной мощности (ИРМ) (компенсирующие устройства - КУ) мощностью QКУ Поэтому баланс реактивной мощности в электрической системе представляется уравнением Q + Q + Q = Q +AQ + Q (137) г Л КУ ^^ потр ^^ пер Следует отметить, что уравнение баланса реактивных мощностей связано с уравнением баланса активных мощностей, так как Q г=P г tgj г.; Q = Гпотр tgj (138) потр потр. Генерация реактивной мощности на электростанциях зависит от числа и активной мощности работающих агрегатов, а потребление реактивной мощности - от состава электроприемников. При номинальном коэффициенте мощности генераторов соБфг = 0,85 коэффициент реактивной мощности tg jг = 0,6. Для потребителей коэффициент реактивной мощности tg j = 0...3. Потери реактивной мощности на передачу в основном определяются потерями реактивной мощности в трансформаторах, при Трех-четырех трансформациях суммарные потери мощности в Трансформаторах могут достигать 40% от передаваемой полной мощности. В линиях напряжением 110 кВ и выше генерация реактивной мощности (зарядная мощность) компенсирует реактивные потери в линиях и может превысить их. Таким образом, при выборе активной мощности генераторов энергосистемы по условию баланса активных мощностей и при работе генераторов с номинальным коэффициентом мощности генерируемая суммарная реактивная мощность без дополнительно используемых ИРМ может оказаться меньше требуемой по условию баланса реактивных мощностей: Qr+QЛ < Q +AQ + Q . (13 9) 1 Л потр пер -^'с.н В этом случае образуется дефицит реактивной мощности, который приводит к следующему: большая загрузка реактивной мощностью генераторов электростанций приводит к перегрузке по току генераторов; передача больших потоков реактивной мощности от генераторов по элементам сети приводит к повышенным токовым нагрузкам и, как следствие, к увеличению затрат на сооружение сети, повышенным потерям активной мощности; недостаток реактивной мощности в системе влечет за собой снижение напряжения в узлах электрических сетей и у потребителей. Для получения баланса реактивных мощностей вблизи основных потребителей реактивной мощности устанавливают дополнительные источники с выдаваемой реактивной мощностью При избытке реактивной мощности в системе, т.е. при Q + Q + Q >Q +DQ + Q , (1310) Г Л КУ ^^ потр ^^ пер В элементах электрической сети возникают перетоки реактивной мощности, встречные направлению потоков активной мощности, что приводит к повышению напряжений в узлах и увеличению потерь мощности. Данный режим характерен для периода минимальных нагрузок в системе. Отсюда возникает задача оптимизации режима реактивной мощности в системе электроснабжения промышленного предприятия, выбора типа и мощности, а также места установки компенсирующих устройств. В системах электроснабжения городов с коммунально-бытовой нагрузкой компенсирующие устройства обычно не устанавливаются. 13.4. Исходные положения по компенсации реактивной мощности в системах электроснабжения промышленных предприятий При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать две группы промышленных сетей в зависимости от состава их нагрузок: сети общего назначения с режимом прямой последовательности основной частоты 50 Гц; сети со специфическими нелинейными, несимметричными и резкопеременными нагрузками. В данном разделе рассматриваются вопросы компенсации реактивной мощности в промышленных сетях общего назначения. На начальной стадии проектирования определяются наибольшие суммарные расчетные нагрузки предприятия при естественном (т. е. до установки КУ) коэффициенте реактивной мощности РрасЧпП, расчПП • Наибольшая суммарная нагрузка предприятия, принимаемая для определения мощности компенсирующих устройств, Q = L Q , (1311) max ПП 0max расчПП где L0 max - коэффициент, учитывающий несовпадение по времени наибольшей активной нагрузки системы и реактивной мощности промышленного предприятия. Значения для разных отраслей промышленности L0 max = 0,75...0,95. Значения наибольших реактивной и активной нагрузок предприятия сообщаются в энергосистему для определения значения экономически оптимальной реактивной мощности, которая может быть передана предприятию в режимах наибольшей и наименьшей активных нагрузок энергосистемы, соответственно Q31 и Q2 . По реактивной мощности Q31 определяется суммарная мощность компенсирующих устройств предприятия, а в соответствии с заданным значением Q3l - регулируемая часть компенсирующих устройств. Суммарная мощность компенсирующих устройств Q = Q - Q , (1312) 2С-КУ iSmax ПП э1 В период минимальных активных нагрузок системы входная реактивная мощность предприятия должна быть равна Q3l, Для чего требуется отключение части установленной на предприятии мощности КУ. В качестве средств компенсации реактивной мощности используются статические конденсаторы напряжением до и выше 1 кВ и синхронные двигатели. 13.5. Основные потребители реактивной мощности на промышленных предприятиях Рассмотрим основные виды электроприемников различного технологического назначения, электропотребителей разных отраслей промышленности, характер их нагрузок и особенности режимов работы. Электродвигатели применяются в приводах различных производственных механизмов на всех промышленных предприятиях. Электропривод представляет собой комплекс электрических машин, аппаратов и систем управления, в котором электродвигатели конструктивно связаны с исполнительным механизмом и преобразуют электрическую энергию в механическую работу. В установках, не требующих регулирования скорости в процессе работы, применяются исключительно электроприводы переменного тока (асинхронные и синхронные двигатели). Нерегулируемые электродвигатели переменного тока - основной вид электроприемников в промышленности, на долю которого приходится около 2/3 суммарной мощности. Доля электропотребления асинхронными двигателями напряжением 0,38 кВ составляет 52% в машиностроении. Характер потребления реактивной мощности асинхронными двигателями описан в следующем разделе. Электротермия, электросварка, электролиз и прочие потребители составляют около 1/3 суммарной промышленной нагрузки. Электротермические приемники в соответствии с методами нагрева делятся на следующие группы: дуговые электропечи для плавки черных и цветных металлов, установки индукционного нагрева для плавки и термообработки металлов и сплавов, электрические печи сопротивления, электросварочные установки, термические коммунально-бытовые приборы. Наибольшее распространение в цеховых электрических сетях напряжением 0,38 кВ имеют печи сопротивления и установки индукционного нагрева. Печи сопротивления прямого и косвенного действия имеют мощность до 2000 кВт и подключаются к сети напряжением 0,38 кВ, коэффициент мощности близок к 1,0. Индукционные плавильные печи промышленной и повышенной частоты представляют собой трехфазную электрическую нагрузку «спокойного» режима работы. Печи повышенной частоты питаются от вентильных преобразователей частоты, к которым подводится переменный ток напряжением 0,4 кВ. Индукционные печи имеют низкий коэффициент мощности: от 0,1 до 0,5. Электросварочные установки переменного тока дуговой и контактной сварки представляют собой однофазную неравномерную и несинусоидальную нагрузку с низким коэффициентом мощности: 0,3 для дуговой сварки и 0,7 - для контактной. Электрохимические и электролизные установки работают на постоянном токе, который получают от преобразовательных подстанций, выпрямляющих трехфазный переменный ток. Коэффициент мощности установок 0,8...0,9. Установки электрического освещения с лампами накаливания, люминесцентными, дуговыми, ртутными, натриевыми, ксеноновымм лампами применяются на всех предприятиях для внутреннего и наружного освещения. В производственных цехах в настоящее время применяются преимущественно дуговые ртутные лампы высокого давления типов ДРЛ и ДРИ 220 В. Аварийное освещение, составляющее 10% общего, выполняется лампами накаливания. Коэффициент мощности светильников с индивидуальными конденсаторами 0,9...0,95, а без них - 0,6. Лишь лампы накаливания имеют коэффициент мощности 1,0. |
||
Последнее изменение этой страницы: 2018-06-01; просмотров: 275. stydopedya.ru не претендует на авторское право материалов, которые вылажены, но предоставляет бесплатный доступ к ним. В случае нарушения авторского права или персональных данных напишите сюда... |